AQA
Surname
Other Names
Centre Number
Candidate Number
Candidate Signature
A-level
CHEMISTRY
Paper 1 Inorganic and Physical Chemistry 7405/1

Tuesday 4 June 2019 Afternoon
Time allowed: 2 hours
At the top of the page, write your surname and other names, your centre number, your candidate number and add your signature.
[Turn over]

> For this paper you must have:
> - the Periodic Table/Data Sheet, provided as an insert (enclosed)
> - a ruler with millimetre measurements
> - a scientific calculator, which you are expected to use where appropriate.

INSTRUCTIONS

- Use black ink or black ball-point pen.
- Answer ALL questions.
- You must answer the questions in the spaces provided. Do NOT write on blank pages.
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.

INFORMATION

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 105.

DO NOT TURN OVER UNTIL TOLD TO DO SO

Answer ALL questions in the spaces provided.

FIGURE 1 shows an incomplete Born-Haber cycle for the
formation of caesium iodide. The diagram is not to scale. FIGURE 1

\|IIIIIIII
TABLE 1 gives values of some standard enthalpy changes.

Name of enthalpy change	$\Delta \boldsymbol{H}^{\boldsymbol{0}} / \mathrm{kJ} \mathrm{mol}^{-1}$
Enthalpy of atomisation of caesium	$\mathbf{+ 7 9}$
First ionisation energy of caesium	$\mathbf{+ 3 7 6}$
Electron affinity of iodine	-314
Enthalpy of lattice formation of caesium iodide	-585
Enthalpy of formation of caesium iodide	-337

[Turn over]

0	1.1
Complete FIGURE 1, on page 4, by writing the formulas,	
including state symbols, of the appropriate species on	
each of the two blank lines. [2 marks]	

Standard enthalpy of atomisation of iodine
$\mathrm{kJ} \mathrm{mol}^{-1}$
[Turn over]

$0 \mid 1$. The enthalpy of lattice formation for caesium iodide in TABLE 1 , on page 5 , is a value obtained by experiment. The value obtained by calculation using the perfect ionic model is $-582 \mathrm{~kJ} \mathrm{~mol}^{-1}$ Deduce what these values indicate about the bonding in caesium iodide. [1 mark]

[Turn over]

0 1. 4

Use data from TABLE 2 to show, in the space on the opposite page, that this reaction is NOT feasible at 298 K
$\mathrm{CsI}(\mathrm{s}) \longrightarrow \mathrm{Cs}(\mathrm{s})+\frac{1}{2} \mathrm{I}_{2}(\mathrm{~s})$
$\Delta H^{0}=+337 \mathrm{~kJ} \mathrm{~mol}^{-1}$

TABLE 2

	Csl (s)	Cs (s)	$\mathrm{I}_{2}(\mathrm{~s})$
$\mathrm{Se} / \mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$	130	82.8	117

[4 marks]

11

[Turn over]

0.2
Time of flight (TOF) mass spectrometry can be used to
analyse large molecules such as the pentapeptide, leucine
encephalin (P).
P is ionised by electrospray ionisation and its mass
spectrum is shown in FIGURE 2.
FIGURE 2
Abundance
[Turn over]
1

15
Equation
[Turn over]
of P ?
o

\section*{| 0 | 2 | 3 |
| :--- | :--- | :--- |}

A molecule Q is ionised by electron impact in a TOF mass spectrometer.

The Q^{+}ion has a kinetic energy of $2.09 \times 10^{-15} \mathrm{~J}$

This ion takes $1.23 \times 10^{-5} \mathrm{~s}$ to reach the detector.

The length of the flight tube is 1.50 m
Calculate the relative molecular mass of Q.
$K E=\frac{1}{2} m v^{2}$ where $m=\operatorname{mass}(\mathrm{kg})$ and $v=\operatorname{speed}\left(\mathrm{m} \mathrm{s}^{-1}\right)$

The Avogadro constant, $L=6.022 \times 10^{23} \mathrm{~mol}^{-1}$ [5 marks]

Relative molecular mass

[Turn over]

20

$0 \mid 3$

This question is about periodicity, the Period 4 elements and their compounds.

State the meaning of the term periodicity. [1 mark]
\qquad
\qquad
\qquad
\qquad

\section*{| 0 | 3 |
| :--- | :--- |}

Identify the element in Period 4 with the highest electronegativity value. [1 mark]
\qquad
\qquad

21

\section*{| 0 | 3 |
| :--- | :--- |}

Identify the element in Period 4 with the largest atomic radius.

Explain your answer. [3 marks]

Element

Explanation
\qquad
\qquad
\qquad
\qquad
[Turn over]

22

\section*{| 0 | 3 |
| :--- | :--- | . 4}

The equations for two reactions of arsenic(III) oxide are shown.
$\mathrm{As}_{2} \mathrm{O}_{3}+6 \mathrm{HCl} \longrightarrow 2 \mathrm{AsCl}_{3}+3 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{As}_{2} \mathrm{O}_{3}+\mathbf{6 N a O H} \longrightarrow 2 \mathrm{Na}_{3} \mathrm{AsO}_{3}+\mathbf{3} \mathrm{H}_{2} \mathrm{O}$
Name the property of arsenic(III) oxide that describes its ability to react in these two ways. [1 mark]

23

\section*{| 0 | 3 |
| :--- | :--- |}

Complete the equation for the formation of arsenic hydride. [1 mark]

$\mathrm{As}_{2} \mathrm{O}_{3}+\mathrm{Zn}+\quad \mathrm{HNO}_{3} \longrightarrow$
$\mathrm{AsH}_{3}+\quad \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}+\quad \mathrm{H}_{2} \mathrm{O}$
[Turn over]

24
FIGURE 3

25

26

0	4		
FIGURE 3, on page 24, shows some reactions of aqueous iron			
ions.			
0 4 1 Give the formula of PRECIPITATE J and state its colour. Give an equation for REACTION 1. [3 marks] Formula of J		$.$	
:---			

Colour
Equation
[Turn over]
Repeat of FIGURE 3

29
014 . 2
Give the formula of L and an equation for REACTION 2.
[2 marks]
Formula of L
[Turn over]
Repeat of FIGURE 3

$0 \mid 4$	3
Suggest	

Suggest a reagent for REACTION 3. [1 mark]

0	4

Transition metal complexes have different shapes and many show isomerism.

Describe the different shapes of complexes and show how they lead to different types of isomerism.

Use examples of complexes of cobalt(II) and platinum(II).

You should draw the structures of the examples chosen. [6 marks]
\qquad
\qquad

33

[Turn over]

34
\qquad

35

[Turn over]

36
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

37

BLANK PAGE

[Turn over]

0	5

This question is about some Group 7 compounds.

0	5

Solid sodium chloride reacts with concentrated sulfuric acid.

Give an equation for this reaction. State the role of the sulfuric acid in this reaction. [2 marks]

Equation

Role

0	5

Fumes of sulfur dioxide are formed when sodium bromide reacts with concentrated sulfuric acid.

For THIS reaction

- give an equation
- give ONE other observation
- state the role of the sulfuric acid.
[3 marks]
Equation

Observation

Role
[Turn over]

40

0	5	3

Chlorine reacts with hot aqueous sodium hydroxide as shown in the equation.
$3 \mathrm{Cl}_{2}+6 \mathrm{NaOH} \rightarrow$
$\mathrm{NaClO}_{3}+5 \mathrm{NaCl}+3 \mathrm{H}_{2} \mathrm{O}$
Give the oxidation state of chlorine in NaClO_{3} and in NaCl [1 mark]
NaClO_{3}
NaCl

41

0	5	4

State, in terms of redox, what happens to chlorine in the reaction in Question 05.3. [1 mark]

[Turn over]

42

0	5

Solution Y contains TWO different negative ions.

To a sample of solution Y in a test tube a student adds

- silver nitrate solution
- then an excess of dilute nitric acid
- finally an excess of concentrated ammonia solution.

The observations after each addition are recorded in TABLE 3.

TABLE 3

REAGENT ADDED TO SOLUTION Y	OBSERVATION
silver nitrate solution	cream precipitate containing compound D and compound E
excess dilute nitric acid	cream precipitate D and bubbles of gas F
excess concentrated ammonia solution	colourless solution containing complex ion G

[Turn over]

BLANK PAGE

Give the formulas of D, E and F.
Give an IONIC equation to show the formation of E.

Give an equation to show the conversion of D into G. [6 marks]

Formula of D
Formula of E \qquad
Formula of F

Ionic equation to form E

Equation to show the conversion of D into G

0	6

A student does an experiment to determine the percentage of copper in an alloy.

The student

- reacts 985 mg of the alloy with concentrated nitric acid to form a solution (all of the copper in the alloy reacts to form aqueous copper(II) ions)
- pours the solution into a volumetric flask and makes the volume up to $250 \mathrm{~cm}^{3}$ with distilled water
- shakes the flask thoroughly
- transfers 25.0 cm 3 of the solution into a conical flask and adds an excess of potassium iodide
- uses exactly $9.00 \mathrm{~cm}^{3}$ of
$0.0800 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium thiosulfate $\left(\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}\right)$ solution to react with all the iodine produced.

The equations for the reactions are

$2 \mathrm{Cu}^{2+}+4 \mathrm{I}^{-} \rightarrow 2 \mathrm{CuI}+\mathrm{I}_{2}$

$2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}+\mathrm{I}_{2} \rightarrow 2 \mathrm{I}^{-}+\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}$
[Turn over]

48

Calculate the percentage of copper by mass in the alloy.

Give your answer to the appropriate number of significant figures. [6 marks]

\% copper

[Turn over]

50
0.6 .2

Suggest TWO ways that the student could reduce the percentage uncertainty in the measurement of the volume of sodium thiosulfate solution, using the same apparatus as this experiment. [2 marks]

1
\qquad
\qquad

2
\qquad
\qquad
\qquad
\qquad

<div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">0</td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">6</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| 0 | 6 |
| :--- | :--- | :--- |</table-markdown></div>

State the role of iodine in the reaction with sodium thiosulfate. [1 mark]

\section*{| 0 | 6 |
| :--- | :--- |}

Give the full electron configuration of a copper(II) ion. [1 mark]
[Turn over]

06.5

Copper(I) iodide is a white solid.
Explain why copper(I) iodide is white. [2 marks]
\qquad
\qquad
\qquad
\qquad

53

BLANK PAGE

[Turn over]

0.6
lodine vaporises easily.
Calculate the volume, in cm^{3}, that 5.00 g of iodine vapour occupies at $185^{\circ} \mathrm{C}$ and 100 kPa

The gas constant $R=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
Give your answer to 3 significant figures. [4 marks]

55

Volume cm ${ }^{3}$

[Turn over]

0	7

Sulfur trioxide decomposes on heating to form an equilibrium mixture containing sulfur dioxide and oxygen.
$2 \mathrm{SO}_{3}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$

0	7	1

A sample of sulfur trioxide was heated and allowed to reach equilibrium at a given temperature.

The equilibrium mixture contained 6.08 g of sulfur dioxide.

Calculate the mass, in g, of oxygen gas in the equilibrium mixture. [2 marks]

[Turn over]

58

0	7.

A different mass of sulfur trioxide was heated and allowed to reach equilibrium at 1050 K
$2 \mathrm{SO}_{3}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$

The amounts of each substance in the equilibrium mixture are shown in TABLE 4.

TABLE 4

Substance	Amount at equilibrium $/ \mathrm{mol}$
sulfur trioxide	0.320
sulfur dioxide	1.20
oxygen	0.600

59

BLANK PAGE

[Turn over]

For this reaction at 1050 K the equilibrium constant, $K_{p}=7.62 \times 10^{5} \mathrm{~Pa}$

Calculate the mole fraction of each substance at equilibrium.

Give the expression for the equilibrium constant, \mathbf{K}_{p}

Calculate the total pressure, in Pa , of this equilibrium mixture. [4 marks]

Mole fraction SO_{3}

Mole fraction $\mathbf{S O}_{2}$

Mole fraction O_{2}

K_{p}

Total pressure

[Turn over]

$0 \mid 7.3$

For this reaction at 1050 K the
equilibrium constant, $K_{p}=7.62 \times 10^{5} \mathrm{~Pa}$
For this reaction at 500 K the equilibrium constant, $K_{p}=3.94 \times 10^{4} \mathrm{~Pa}$

Explain how this information can be used to deduce that the forward reaction is endothermic. [2 marks]

BLANK PAGE

[Turn over]

64
$0 \mid 7.4$
Use data from Question 07.3 to calculate the value of K_{p}, at 500 K , for the equilibrium represented by this equation.

Deduce the units of K_{p}
$\mathrm{SO}_{3}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})$
[2 marks]

65

Units

66

0	8

This question is about structure and bonding.

0	8

Draw a diagram on the opposite page to show the strongest type of interaction between two molecules of ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ in the liquid phase.

Include all lone pairs and partial charges in your diagram. [3 marks]

68

0	8.

Methoxymethane $\left(\mathrm{CH}_{3} \mathrm{OCH}_{3}\right)$ is an isomer of ethanol.

TABLE 5 shows the boiling points of ethanol and methoxymethane.

TABLE 5

Compound	Boiling point $/{ }^{\circ} \mathrm{C}$
ethanol	78
methoxymethane	-24

In terms of the intermolecular forces involved, explain the difference in boiling points. [3 marks]
\qquad
\qquad

69
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

[Turn over]

70

0	8.

Draw the shape of the POCl_{3} molecule and the shape of the ClF_{4}^{-}ion.
Include any lone pairs of electrons that influence the shapes.

In a POCl_{3} molecule the oxygen atom is attached to the phosphorus atom by a double bond that uses two electrons from phosphorus.

Name each shape.
Suggest a value for the bond angle in ClF_{4}^{-}
[5 marks]

71

Shape of POCl_{3}

Shape of ClF_{4}^{-}

[Turn over]

BLANK PAGE

73

Name of shape of POCl_{3}

Name of shape of ClF_{4}^{-}

Bond angle in ClF_{4}^{-}
[Turn over]

74

$0 \mid 9$
This question is about different pH values.

0 9. 1

For pure water at $40^{\circ} \mathrm{C}, \mathrm{pH}=6.67$ A student thought that the water was acidic.

Explain why the student was incorrect.
Determine the value of K_{w} at this temperature. [4 marks]

Explanation

75
$\mathrm{mol}^{2} \mathrm{dm}^{-6}$
[Turn over]

FIGURE 4
pH
14
13
12

9
8
7
6
5
4
3
2

0
024681012141618202224 Volume of $\mathrm{NaOH} / \mathrm{cm}^{3}$

77

BLANK PAGE

[Turn over]

0	9.	2

Sodium hydroxide solution was added gradually from a burette to $25 \mathrm{~cm}^{3}$ of $0.080 \mathrm{~mol} \mathrm{dm}^{-3}$ propanoic acid at $25^{\circ} \mathrm{C}$

The pH was measured and recorded at regular intervals.

The results are shown in FIGURE 4, on page 76.
Use FIGURE 4 to determine the value of K_{a} for propanoic acid at $25^{\circ} \mathrm{C}$

Show your working. [3 marks]

K_{a} $\mathrm{mol} \mathrm{dm}^{-3}$

[Turn over]

BLANK PAGE

81

0.9 .3

Suggest which indicator is the most appropriate for the reaction in
Question 09.2
Tick (\checkmark) ONE box. [1 mark]

Tick (\checkmark one box	Indicator	pH range
	methyl orange	$3.1-4.4$
	bromothymol blue	$6.0-7.6$
	cresolphthalein	$8.2-9.8$
	indigo carmine	$11.6-13.0$

[Turn over]

82

0	9

A student prepared a buffer solution by adding 0.0136 mol of a salt KX to $100 \mathrm{~cm}^{3}$ of a $0.500 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of a weak acid HX and mixing thoroughly.

The student then added $3.00 \times 10^{-4} \mathrm{~mol}$ of potassium hydroxide to the buffer solution.

Calculate the pH of the buffer solution after adding the potassium hydroxide.

For the weak acid HX at $25^{\circ} \mathrm{C}$ the value of the acid dissociation constant, $K_{a}=1.41 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$.

Give your answer to two decimal places.
[6 marks]

83

pH

[Turn over]

84

019.5

A buffer solution has a constant pH even when diluted.

Use a mathematical expression to explain this. [1 mark]

END OF QUESTIONS

85

BLANK PAGE

86

BLANK PAGE

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
TOTAL	

Copyright information

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third-party copyright material are published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2019 AQA and its licensors. All rights reserved.

IB/M/JW/Jun19/7405/1/E4

