Paper 1 Inorganic and Physical

 ChemistryTime allowed: 2 hours
At the top of the page, write your surname and other names, your centre number, your candidate number and add your signature.
[Turn over]

For this paper you must have:

- the Periodic Table/Data Booklet, provided as an insert (enclosed)
- a ruler with millimetre measurements
- a scientific calculator, which you are expected to use where appropriate.

INSTRUCTIONS

- Use black ink or black ball-point pen.
- Answer ALL questions.
- You must answer the questions in the spaces provided. Do NOT write on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.

INFORMATION

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 105.

DO NOT TURN OVER UNTIL TOLD TO DO SO

Answer ALL questions in the spaces provided.

0	1

This question is about enthalpy changes.

FIGURE 1, on the opposite page, shows a Born-Haber cycle for the formation of strontium chloride, SrCl_{2}

FIGURE 1

$$
\mathrm{Sr}^{2+}(\mathrm{g})+2 \mathrm{Cl}(\mathrm{~g})+2 \mathrm{e}^{-}
$$

[Turn over]

TABLE 1 shows some thermodynamic data.

TABLE 1

	Enthalpy change $/ \mathrm{kJ} \mathrm{mol}^{-1}$
First ionisation energy of strontium	+548
Second ionisation energy of strontium	+1060
Enthalpy of atomisation of chlorine	+121
Enthalpy of atomisation of strontium	+164
Enthalpy of formation of strontium chloride	-828
Enthalpy of lattice formation of strontium chloride	-2112

Use the data in TABLE 1 to calculate a value for the electron affinity of chlorine. [3 marks]

Electron affinity kJ mol ${ }^{-1}$

[Turn over]

0	1

Draw a line from EACH substance to the enthalpy of lattice formation of that substance. [1 mark]

Substance

MgCl_{2}

MgO

BaCl_{2}

Enthalpy of
lattice formation / kJ mol- ${ }^{-1}$
-2018
-2493
-3889

TABLE 2, on the opposite page, shows the theoretical lattice enthalpy, based on a perfect ionic model, and an experimental value for the enthalpy of lattice formation of silver chloride.

TABLE 2

	Theoretical	Experimental
Enthalpy of lattice formation $/$ kJ mol $^{-1}$	-770	-905

0	1

State why there is a difference between the theoretical and experimental values. [1 mark]
[Turn over]

0	1	4

TABLE 3 shows enthalpy of hydration values for ions of some Group 1 elements.

TABLE 3

	$\mathrm{Li}^{+}(\mathrm{g})$	$\mathrm{Na}^{+}(\mathrm{g})$	$\mathrm{K}^{+}(\mathrm{g})$
Enthalpy of hydration $\mathrm{kJ} \mathrm{mol}^{-1}$	-519	-406	-322

Explain why the enthalpy of hydration becomes less exothermic from Li^{+}to K^{+} [2 marks]
\qquad
\qquad
\qquad

\section*{| 0 | 1.5 |
| :--- | :--- | :--- |}

Calcium bromide dissolves in water.
TABLE 4 shows some enthalpy data.

TABLE 4

Enthalpy change $/ \mathrm{kJ} \mathrm{mol}^{-1}$
Enthalpy of solution of calcium bromide -110

Enthalpy of lattice formation of calcium -2176 bromide
Enthalpy of
hydration of calcium -1650 ions

Use the data in TABLE 4 to calculate the enthalpy of hydration, in $\mathrm{kJ} \mathrm{mol}^{-1}$, of bromide ions. [3 marks]

Enthalpy of hydration of bromide ions

 kJ mol ${ }^{-1}$
$0 \mid 2$

This question is about the isotopes of chromium.

0.2. 1

Give the meaning of the term relative atomic mass. [2 marks]
\qquad
\qquad
\qquad
\qquad
\qquad

0	2

A sample of chromium containing the isotopes ${ }^{50} \mathrm{Cr},{ }^{52} \mathrm{Cr}$ and ${ }^{53} \mathrm{Cr}$ has a relative atomic mass of 52.1

The sample contains $\mathbf{8 6 . 1 \%}$ of the ${ }^{52} \mathrm{Cr}$ isotope.
Calculate the percentage abundance of each of the other two isotopes. [4 marks]

Abundance of ${ }^{50} \mathrm{Cr}$ \%

Abundance of ${ }^{53} \mathrm{Cr}$ \%
[Turn over]

0 2. 3

State, in terms of the numbers of
fundamental particles, ONE similarity and ONE difference between atoms of ${ }^{50} \mathrm{Cr}$ and ${ }^{53} \mathrm{Cr}$ [2 marks]
Similarity

Difference

\qquad
\qquad
\qquad

The sample of chromium is analysed in a time of flight (TOF) mass spectrometer.

| 0 | 2. |
| :--- | :--- | :--- |
| 4 | |

Give TWO reasons why it is necessary to ionise the isotopes of chromium before they can be analysed in a TOF mass spectrometer. [2 marks]
1
\qquad

2
\qquad
[Turn over]

\section*{| 0 | 2 |
| :--- | :--- |}

A ${ }^{53} \mathrm{Cr}^{+}$ion travels along a flight tube of length 1.25 m

The ion has a constant kinetic energy $(K E)$ of $1.102 \times 10^{-13} \mathrm{~J}$
$K E=\frac{m v^{2}}{2}$
$m=$ mass of the ion $/ \mathrm{kg}$
$v=$ speed of ion $/ \mathrm{m} \mathrm{s}^{-1}$

Calculate the time, in s, for the ${ }^{53} \mathrm{Cr}^{+}$ ion to travel down the flight tube to reach the detector.

The Avogadro constant,
$L=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
[5 marks]

19

Time S

[Turn over]

20
$0 \mid 3$

This question is about Period 3 elements.

FIGURE 2, on the opposite page, shows the SECOND ionisation energies of some elements in Period 3.

FIGURE 2

Second ionisation energy / $\mathrm{kJ} \mathrm{mol}^{-1}$

0	3	1

Draw a cross (x) on FIGURE 2 to show the SECOND ionisation energy of silicon.
[1 mark]
[Turn over]

22

0	3

Identify the element in Period 3, from sodium to argon, that has the highest SECOND ionisation energy.

Give an equation, including state symbols, to show the process that occurs when the SECOND ionisation energy of this element is measured.

If you were unable to identify the element you may use the symbol Q in your equation. [2 marks]

Element

Equation

23

Explain why the atomic radius decreases across Period 3, from sodium to chlorine. [2 marks]

Identify the element in Period 3, from sodium to chlorine, that has the highest electronegativity. [1 mark]
[Turn over]

24

$0 \mid 3.5$

Phosphorus burns in air to form phosphorus(V) oxide.

Give an equation for this reaction. [1 mark]

25

BLANK PAGE

[Turn over]

26

$0 \mid 4$

Propanoic acid $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}\right)$ is a weak acid.

The acid dissociation constant (K_{a}) for propanoic acid is $1.35 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$ at $25^{\circ} \mathrm{C}$

0	4	1

State the meaning of the term weak acid. [1 mark]

27

$0 \mid 4$. 2

Give an expression for the acid dissociation constant for propanoic acid. [1 mark]
K_{a}
[Turn over]

28

| 0 | 4 |
| :--- | :--- | :--- |

A student dilutes $25.0 \mathrm{~cm}^{3}$ of
$0.500 \mathrm{~mol} \mathrm{dm}^{-3}$ propanoic acid by adding water until the total volume is $100.0 \mathrm{~cm}^{3}$

Calculate the pH of this diluted solution of propanoic acid.

Give your answer to 2 decimal places. [4 marks]

29

BLANK PAGE

[Turn over]

0	4

A buffer solution with a pH of 4.50 is made by dissolving $\boldsymbol{x} \boldsymbol{g}$ of sodium propanoate $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COONa}\right)$ in a solution of propanoic acid. The final volume of buffer solution is $500 \mathrm{~cm}^{3}$ and the final concentration of the propanoic acid is $0.250 \mathrm{~mol} \mathrm{dm}^{-3}$

Calculate x in g
For propanoic acid, $K_{a}=1.35 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$
[6 marks]

31
32

$0 \mid 5$
Some reactions of the $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}(\mathrm{aq})$ ion are shown.

$\mathrm{B}(\mathrm{s})$
White
precipitate
$\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}(\mathrm{aq}) \xrightarrow{\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})}$
$\mathrm{B}(\mathrm{s})$
White
precipitate
$\stackrel{\mathrm{Na}_{4} \text { EDTA(aq) }}{\leftrightarrows}$
Colourless
solution
containing
complex
White precipitate that reacts
to form a colourless solution
containing complex ion C

33

0.5 .1
Give the
State ON
a solution

Give the formula of the white precipitate B.

State ONE other observation when $\mathrm{Na}_{2} \mathrm{CO}_{3}(a q)$
a solution containing $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}(\mathrm{aq})$ ions.
State ONE other observation when $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})$ is added to a solution containing $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}(\mathrm{aq})$ ions.
Give an equation for this reaction. [3 marks]

Formula of B
Observation
Equation
[Turn over]

34
REPEAT OF FIGURE ON PAGE 32
Colourless
solution
containing
complex
ion A

35

2

$0 \mid 5$.
Give the
State
[Al $\left(\mathrm{H}_{2}\right.$
from
0
of
formation
Give the formula of the complex ion C .
State ONE condition needed for the form
$\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}(\mathrm{aq})$ and $\mathrm{NaOH}(\mathrm{aq})$.
Give an equation for this reaction. [3 m
Formula of C

Equation

36

Explanation
[Turn over]

$0 \mid 6$

Methanol can be manufactured in a reversible reaction as shown.
$\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$
$\Delta H{ }^{\theta}=-91 \mathrm{~kJ} \mathrm{~mol}^{-1}$

FIGURE 3, on the opposite page, shows how the partial pressures change with time at a constant temperature.

FIGURE 3

Partial

pressure

Time

\section*{| 0 | 6.1 |
| :--- | :--- | :--- |}

Draw a cross (x) on the appropriate axis of FIGURE 3 when the mixture reaches equilibrium. [1 mark]
[Turn over]

0	6

A 0.230 mol sample of carbon monoxide is mixed with hydrogen in a $1: 2 \mathrm{~mol}$ ratio and allowed to reach equilibrium in a sealed flask at temperature T. At equilibrium the mixture contains 0.120 mol of carbon monoxide. The total pressure of this mixture is $1.04 \times 10^{4} \mathrm{kPa}$

Calculate the partial pressure, in kPa , of hydrogen in the equilibrium mixture. [4 marks]

Partial pressure of hydrogen kPa

[Turn over]

Give an expression for the equilibrium constant (K_{p}) for this reaction.

State the units. [2 marks]

K_{p}

Units

43

0	6

Some more carbon monoxide is added to the mixture in Question 06.2. The new mixture is allowed to reach equilibrium at temperature T.

State the effect, if any, on the partial pressure of methanol and on the value of K_{p} [2 marks]

Effect on partial pressure of methanol

Effect on value of K_{p}
[Turn over]

<div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">0</td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">6</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| 0 | 6 |
| :--- | :--- |</table-markdown></div>

State the effect, if any, of the addition of a catalyst on the value of K_{p} for this equilibrium.

Explain your answer. [2 marks]
Effect on value of K_{p}

Explanation
\qquad
\qquad
\qquad
\square

45

\section*{| 0 | 7 |
| :--- | :--- |}

The melting point of XeF_{4} is higher than the melting point of PF_{3}

Explain why the melting points of these two compounds are different.

In your answer you should give the shape of each molecule, explain why each molecule has that shape and how the shape influences the forces that affect the melting point. [6 marks]
[Turn over]
46
\qquad

47

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
[Turn over]

\section*{| | 8 |
| :--- | :--- | :--- |}

A student does an experiment to determine the percentage by mass of sodium chlorate(I), NaClO , in a sample of bleach solution.

Method:

- Dilute a $10.0 \mathrm{~cm}^{3}$ sample of bleach solution to $100 \mathrm{~cm}^{3}$ with distilled water.
- Transfer $25.0 \mathrm{~cm}^{3}$ of the diluted bleach solution to a conical flask and acidify using sulfuric acid.
- Add excess potassium iodide to the conical flask to form a brown solution containing $\mathrm{I}_{2}(\mathrm{aq})$.
- Add $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium thiosulfate solution $\left(\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}\right)$ to the conical flask from a burette until the brown solution containing $\mathrm{I}_{\mathbf{2}}(\mathrm{aq})$ becomes a colourless solution containing $\mathrm{I}^{-}(\mathrm{aq})$.

The student uses $33.50 \mathrm{~cm}^{3}$ of sodium thiosulfate solution.

The density of the original bleach solution is $1.20 \mathrm{~g} \mathrm{~cm}^{-3}$

The equations for the reactions in this experiment are
$\mathrm{ClO}^{-}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{I}^{-}(\mathrm{aq}) \longrightarrow$
$\mathrm{Cl}-(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{I}_{2}(\mathrm{aq})$
$2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}(\mathrm{aq})+\mathrm{I}_{2}(\mathrm{aq}) \longrightarrow$
$2 \mathrm{I}^{-}(\mathrm{aq})+\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}(\mathrm{aq})$
[Turn over]

50

BLANK PAGE

 and 49, to calculate the percentage by mass of NaClO in the original bleach solution.Give your answer to 3 significant figures. [7 marks]

Percentage by mass
[Turn over]

The total uncertainty from two readings and an end point error in using a burette is $\pm 0.15 \mathrm{~cm}^{3}$

What is the total percentage uncertainty in using the burette in this experiment? [1 mark]

Tick (\checkmark) ONE box.

0.45\%
0.90\%

BLANK PAGE

[Turn over]

\section*{| 0 | 9 |
| :--- | :--- |}

This question is about sodium halides.

0	9.

State what is observed when silver nitrate solution is added to sodium fluoride solution. [1 mark]
0.9 . 2

State ONE observation when solid sodium chloride reacts with concentrated sulfuric acid.

Give an equation for the reaction.
State the role of the chloride ions in the reaction. [3 marks]

Observation

Equation

Role
[Turn over]

56

\section*{| 0 | 9 | 3 |
| :--- | :--- | :--- |}

Give an equation for the redox reaction between solid sodium bromide and concentrated sulfuric acid.

Explain, using oxidation states, why this is a redox reaction. [3 marks]

Equation

Explanation
\qquad
\qquad
\qquad

0	9

State what is observed when aqueous chlorine is added to sodium bromide solution.

Give an ionic equation for the reaction. [2 marks]
Observation

Ionic Equation

[Turn over]
9

58

1	0
Methanol is formed when carbon dioxide and hydrogen	
react.	
$\mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	
TABLE 5 contains enthalpy of formation and entropy data	
for these substances.	

the
calculate
for this
$\begin{aligned} & 1.0 .1 \\ & \text { Use the equation and the data in TABLE } 5 \text { to } \\ & \text { Gibbs free-energy change }(\Delta G) \text {, in } \mathrm{kJ} \mathrm{mol}^{-1} \text {, } \\ & \text { reaction at } 890 \mathrm{~K} \text { [} 6 \text { marks] }\end{aligned}$,

FIGURE 4, on the opposite page, shows how the Gibbs free-energy change varies with temperature in a different gas phase reaction.

The straight line graph for this gas phase reaction has been extrapolated to zero Kelvin.

61
FIGURE 4

[Turn over]

62

BLANK PAGE

10	2

Use the values of the intercept and gradient from the graph in FIGURE 4, on page 61, to calculate the enthalpy change (ΔH), in $\mathrm{kJ} \mathrm{mol}^{-1}$, and the entropy change (ΔS), in $\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$, for this reaction. [4 marks]
$\Delta H \quad \mathrm{~kJ} \mathrm{~mol}^{-1}$
ΔS $\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$
[Turn over]

REPEAT OF FIGURE 4
$\Delta \mathbf{G} /$
kJ mol ${ }^{-1}$
200
150

50

65

\section*{| 1 | 0. | 3 |
| :--- | :--- | :--- |}

State what FIGURE 4 shows about the feasibility of the reaction.
[1 mark]
[Turn over]

1 1 1

This question is about a glucose-oxygen fuel cell.

When the cell operates, the glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ molecules react with water at the negative electrode to form carbon dioxide and hydrogen ions.

Oxygen gas reacts with hydrogen ions to form water at the positive electrode.

1	1.

Deduce the half-equation for the reaction at the negative electrode. [1 mark]

67

\section*{| 1 | 1. |
| :--- | :--- |}

Deduce the half-equation for the reaction at the positive electrode. [1 mark]

11 . 3

Give the equation for the overall reaction that occurs in the Glucose-oxygen fuel cell. [1 mark]
[Turn over]

68

1	1.4

The negative electrode is made of carbon and the positive electrode is made of platinum.

Give the conventional representation for the glucose-oxygen fuel cell. [2 marks]
\qquad
\qquad

<div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">1</td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">1.5</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| 1 | 1.5 |
| :--- | :--- |</table-markdown></div>

State what must be done to maintain the EMF of this fuel cell when in use. [1 mark]

END OF QUESTIONS

70
\qquad

71

\qquad

72

Additional page, if required. Write the question numbers in the left-hand margin.

\qquad

73

\qquad

BLANK PAGE

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
TOTAL	

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2020 AQA and its licensors. All rights reserved.

IB/M/CD/Jun20/7405/1/E4

