AQAE

Surname \qquad
Other Names \qquad
Centre Number
Candidate Number
Candidate Signature
I declare this is my own work.

A-level

CHEMISTRY

Paper 2 Organic and Physical Chemistry

7405/2

Monday 8 June 2020
Afternoon
Time allowed: 2 hours
At the top of the page, write your surname and other names, your centre number, your candidate number and add your signature.
[Turn over]

BLANK PAGE

For this paper you must have:

- the Periodic Table/Data Booklet, provided as an insert (enclosed)
- a ruler with millimetre measurements
- a scientific calculator, which you are expected to use where appropriate.

INSTRUCTIONS

- Use black ink or black ball-point pen.
- Answer ALL questions.
- You must answer the questions in the spaces provided. Do NOT write on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.

INFORMATION

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 105.

DO NOT TURN OVER UNTIL TOLD TO DO SO

Answer ALL questions in the spaces provided.

0	1	This question is about rates of reaction.

Phosphinate ions $\left(\mathrm{H}_{2} \mathrm{PO}_{2}^{-}\right)$react with hydroxide ions to produce hydrogen gas as shown.
$\mathrm{H}_{2} \mathrm{PO}_{2}{ }^{-}+\mathrm{OH}^{-} \longrightarrow \mathrm{HPO}_{3}{ }^{2-}+\mathrm{H}_{2}$
A student completed an experiment to determine the initial rate of this reaction.

The student used a solution containing phosphinate ions and measured the volume of hydrogen gas collected every 20 seconds at a constant temperature.

FIGURE 1, on the opposite page, shows a graph of the student's results.

FIGURE 1

Volume / cm ${ }^{3}$

Time / s
[Turn over]

REPEAT OF FIGURE 1

Volume / cm ${ }^{3}$

Time / s

| 0 | 1.1 | 1 |
| :--- | :--- | :--- | initial rate of reaction for this experiment. State its units. Show your working on the graph. [3 marks]

Rate

Units
[Turn over]

0	1	2
2		

TABLE 1 shows the results.
TABLE 1

Initial $\left[\mathrm{H}_{2} \mathrm{PO}_{2}{ }^{-}\right] / \mathrm{mol} \mathrm{dm}$	
0.25	t / s
0.25	64
0.35	32
0.50	16
1.00	4

State the relationship between the initial concentration of phosphinate and time (t).

Deduce the order of the reaction with respect to phosphinate. [2 marks]

Relationship

Order
\qquad
\qquad
\qquad

\section*{| 0 | 1.3 | Complete the diagram in FIGURE 2 to show |
| :--- | :--- | :--- | how the hydrogen gas could be collected and measured in the experiments in Questions 01.1 and 01.2. [1 mark]}

FIGURE 2

[Turn over]

The rate equation for a different reaction is rate $=k[L][M]^{2}$

| 0 | 1.4 | Deduce the overall effect on the rate of |
| :--- | :--- | :--- | reaction when the concentrations of both L and M are halved. [1 mark]

\qquad
\qquad
\qquad
\qquad

0	1	5
5		

$0.0155 \mathrm{~mol} \mathrm{dm}^{-3}$
Calculate the concentration of M if the rate constant is $21.3 \mathrm{~mol}^{-2} \mathrm{dm}^{6} \mathrm{~s}^{-1}$
[3 marks]
\qquad $\mathrm{mol} \mathrm{dm}^{-3}$
[Turn over]

0.1.6 Define the term overall order of reaction. [1 mark]
\qquad
\qquad

BLANK PAGE

[Turn over]

0	2
Prilocaine is used as an anaesthetic in	

FIGURE 3 shows the structure of prilocaine.
FIGURE 3

\section*{| 0 | 2 |
| :--- | :--- | :--- | . 1 Draw a circle around any chiral centre(s) in FIGURE 3. [1 mark]}

0.2. 2 Identify the functional group(s) in the prilocaine molecule. [1 mark]

Tick (\checkmark) the box(es) corresponding to the functional group(s).

AMIDE

AMINE

ESTER

KETONE

[Turn over]

BLANK PAGE

\section*{| 0 | 2 | 3 |
| :--- | :--- | :--- | human body to give a mixture of products.}

Draw the structures of the two organic products formed in the complete hydrolysis of prilocaine in acidic conditions. [3 marks]

| 0 | 2 | 4 |
| :--- | :--- | :--- | FIGURE 4 shows optical isomers F and G.

FIGURE 4

Isomer F

Isomer G

Isomer F is the active compound in the medicine ibuprofen.

In the manufacture of ibuprofen both isomers F and G are formed. An enzyme is then used to bind to isomer \mathbf{G} and catalyse its hydrolysis.

After the products of hydrolysis of \mathbf{G} are removed, a pure sample of isomer F is collected.

Explain how a structural feature of this enzyme enables it to catalyse the hydrolysis of isomer \mathbf{G} but not the hydrolysis of isomer F . [2 marks]
[Turn over]

| 0 | 3 |
| :--- | :--- | :--- | shown.

P

Q

T

S

HO

U

0	3	1
1		

State the expected observation when acidified potassium dichromate(VI) reacts. [2 marks]

Isomer(s) \qquad

Expected observation

0	3.	2
Identify the isomer(s) that would react with		

State the expected observation when Tollens' reagent reacts. [2 marks]

Isomer(s) \qquad

Expected observation \qquad
\qquad
\qquad

| 0 | 3 | 3 Separate samples of each isomer are warmed |
| :--- | :--- | :--- | with ethanoic acid and a few drops of concentrated sulfuric acid. In each case the mixture is then poured into a solution of sodium hydrogencarbonate.

Identify the isomer(s) that would react with ethanoic acid.

Suggest a simple way to detect if the ethanoic acid reacts with each isomer.

Give a reason why the mixture is poured into sodium hydrogencarbonate solution.
[3 marks]
Isomer(s) \qquad
Suggestion \qquad
\qquad
\qquad

Reason
\qquad
\qquad

| 0 | 3 | .4 |
| :--- | :--- | :--- | State the type of structural isomerism shown by isomers P, Q, R and S. [1 mark]

[Turn over]

| 0 | 3 |
| :--- | :--- | .5 Describe fully how infrared spectra can be used to distinguish between isomers R, S and T.

Use data from TABLE A in the Data Booklet in your answer. [4 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$0 \mid 3$. 6 State why mass spectrometry using electrospray ionisation is NOT a suitable method to distinguish between the isomers. [1 mark]
\qquad
[Turn over]

| 0 | 4 |
| :--- | :--- | Aspirin can be produced by reacting salicylic acid with ethanoic anhydride.

An incomplete method to determine the yield of aspirin is shown.

1. Add about 6 g of salicylic acid to a weighing boat.
2. Place the weighing boat on a 2 decimal place balance and record the mass.
3. Tip the salicylic acid into a $100 \mathrm{~cm}^{3}$ conical flask.
4.
5. Add $10 \mathrm{~cm}^{3}$ of ethanoic anhydride to the conical flask and swirl.
6. Add 5 drops of concentrated phosphoric acid.
7. Warm the flask for $\mathbf{2 0}$ minutes.
8. Add ice-cold water to the reaction mixture and place the flask in an ice bath.
9. Filter off the crude aspirin from the mixture and leave it to dry.
10. Weigh the crude aspirin and calculate the yield.

0	4	1
1		

Justify why this step is necessary. [2 marks]
Instruction \qquad

Justification \qquad
\qquad
\qquad
\qquad

0	4	2
Suggest a suitable piece of apparatus to		

[Turn over]

28

| 0 | 4 | .3 |
| :--- | :--- | :--- | Identify a hazard of using concentrated phosphoric acid in step 6. [1 mark]

BLANK PAGE

[Turn over]

0	4	4
Complete the equation for the reaction of salicylic acid with ethanoic		

Calculate the mass, in g , of aspirin ($M_{\mathrm{r}}=180.0$) produced. [5 marks]
Reagent in excess

[Turn over]

REPEAT OF METHOD

Aspirin can be produced by reacting salicylic acid with ethanoic anhydride.

An incomplete method to determine the yield of aspirin is shown.

1. Add about 6 g of salicylic acid to a weighing boat.
2. Place the weighing boat on a 2 decimal place balance and record the mass.
3. Tip the salicylic acid into a $\mathbf{1 0 0} \mathrm{cm}^{3}$ conical flask.
4.
5. Add $10 \mathrm{~cm}^{3}$ of ethanoic anhydride to the conical flask and swirl.
6. Add 5 drops of concentrated phosphoric acid.
7. Warm the flask for $\mathbf{2 0}$ minutes.
8. Add ice-cold water to the reaction mixture and place the flask in an ice bath.
9. Filter off the crude aspirin from the mixture and leave it to dry.
10. Weigh the crude aspirin and calculate the yield.

0	4	6
Suggest TWO ways in which the melting point		

Difference 1

Difference 2
[Turn over]

| 0 | 4 | 7 The crude aspirin can be purified by |
| :--- | :--- | :--- | recrystallisation using hot ethanol (boiling point $=78^{\circ} \mathrm{C}$) as the solvent.

Describe TWO important precautions when heating the mixture of ethanol and crude aspirin. [2 marks]

Precaution 1

Precaution 2

\qquad
\qquad

0	4	8
8	The pure aspirin is filtered under reduced	

Explain the purpose of adding a small amount of cold ethanol. [1 mark]
\qquad
\qquad

| 0 | 4 | .9 A sample of the crude aspirin is kept to |
| :--- | :--- | :--- | compare with the purified aspirin.

Describe one difference in appearance you would expect to see between these two solid samples. [1 mark]
\qquad
\qquad
[Turn over]

0	5	This question is about 2-bromopropane.

\section*{| 0 | 5 | 1 Define the term electronegativity. |
| :--- | :--- | :--- |}

Explain the polarity of the $\mathrm{C}-\mathrm{Br}$ bond in 2-bromopropane. [3 marks]

Electronegativity

Explanation

\qquad
\qquad
\qquad

\section*{| 0 | 5 | .2 |
| :--- | :--- | :--- | 2-bromopropane with an excess of ammonia. [4 marks]}

[Turn over]

005 . 3 Draw the skeletal formula of the main organic species formed in the reaction between a LARGE EXCESS of 2-bromopropane and ammonia.

Give a use for the organic product. [2 marks]
Skeletal formula

Use \qquad

BLANK PAGE

[Turn over]
Polystyrene can be made from benzene in the series of steps shown. -

$\stackrel{\mathrm{CH}}{\mathrm{CH}}_{\mathrm{OH}}$
 State the type of reaction in step 1.
Identify the reagent(s) and conditions needed for step 1. [3 marks]
Type of reaction
006. 1
Reagent(s)
Conditions
Conditions
State the name of the mechanism for the reaction in step 2.
Identify the inorganic reagent needed for step 2.
Name the organic product of step 2. [3 marks]
Name of mechanism
Inorganic reagent
Name of organic product
N

acid
Outline the mechanism for step 3. [3 marks]

9
0
0

44

N
0
\vdots
\vdots
0

0	6.4	Draw the repeating unit of polystyrene. [1 mark]

[Turn over]

0	7	This question is about NMR spectroscopy.

| 0 | 7.1 | A compound is usually mixed with $\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{4} 4$ |
| :--- | :--- | :--- | and either CCl_{4} or CDCl_{3} before recording the compound's ${ }^{1} \mathrm{H}$ NMR spectrum.

State why $\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{4}, \mathrm{CCl}_{4}$ and CDCl_{3} are used in ${ }^{1} \mathrm{H}$ NMR spectroscopy.

Explain how their properties make them suitable for use in ${ }^{1} \mathrm{H}$ NMR spectroscopy. [6 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
[Turn over]

48

||IIIIIIIII
[Turn over]
$0 \mid 7.2$ Deduce the splitting pattern for each of the peaks given by the H atoms labelled x, y and z in the ${ }^{1} H$ NMR spectrum of the compound shown.
$\stackrel{x}{\mathrm{CH}_{3} \mathrm{CHCICOCH}} \underset{\left(\mathrm{CH}_{3}\right)_{2}}{\boldsymbol{y}}$
[3 marks]
x \qquad
y \qquad

Z \qquad

| 0 | 7 | 3 |
| :--- | :--- | :--- | Suggest why it is difficult to use TABLE B in the Data Booklet to predict the chemical shift (δ value) for the peak given by the H atom labelled y. [1 mark]

[Turn over]

| 0 | 7.4 Two isomers of $\mathrm{CH}_{3} \mathrm{CHClCOCH}\left(\mathrm{CH}_{3}\right)_{2}$ each |
| :--- | :--- | :--- | have two singlet peaks only in their ${ }^{1} \mathrm{H}$ NMR spectra.

In both spectra the integration ratio for the two peaks is $\mathbf{2 : 9}$

Deduce the structures of these two isomers [2 marks]

Isomer 1

Isomer 2

[Turn over]

| 0 | 8 This question is about citric acid, a hydrated |
| :--- | :--- | tricarboxylic acid. Its formula can be represented as $\mathrm{H}_{3} \mathrm{Y} . x \mathrm{H}_{2} \mathrm{O}$

| 0 | 8 | 1 |
| :--- | :--- | :--- | 0.913 g of oxygen by mass.

The sample burns completely in air to form 1.89 g of CO_{2} and 0.643 g of $\mathrm{H}_{2} \mathrm{O}$

Show that the empirical formula of citric acid is $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{4}$
[5 marks]

\section*{| 0 | 8 | 2 |
| :--- | :--- | :--- |
| A 3.00 g sample of $\mathrm{H}_{3} \mathrm{Y} . x \mathrm{H}_{2} \mathrm{O}\left(M_{\mathrm{r}}=210.0\right)$ is l | | |} heated to constant mass.

The anhydrous $\mathrm{H}_{3} \mathrm{Y}$ that remains has a mass of 2.74 g

Show, using these data, that the value of $x=1$ [2 marks]
[Turn over]

FIGURE 5 shows the structure of $\mathrm{H}_{3} \mathrm{Y}$
FIGURE 5

0	8.	3 Complete this IUPAC name for $\mathrm{H}_{3} \mathrm{Y}$ [1 mark]

propane-1, 2, 3-tricarboxylic acid

| 0 | 8.4 |
| :--- | :--- | State the number of peaks you would expect in the ${ }^{13} \mathrm{C}$ NMR spectrum for $\mathrm{H}_{3} \mathrm{Y}$ [1 mark]

BLANK PAGE

[Turn over]
$\left.\begin{array}{|l|l|l}\hline 0 & 9 & A\end{array}\right)$ and B react together to form an equilibrium mixture.
$\mathrm{A}(\mathrm{aq})+2 \mathrm{~B}(\mathrm{aq}) \rightleftharpoons \mathrm{C}(\mathrm{aq})$
An aqueous solution containing 0.25 mol of A is added to an aqueous solution containing 0.25 mol of B .

When equilibrium is reached, the mixture contains $\mathbf{0 . 0 1 5} \mathbf{~ m o l}$ of \mathbf{C}.

| 0 | 9. | Calculate the amount of A and the amount of |
| :--- | :--- | :--- | B, in moles, in the equilibrium mixture.

[2 marks]

Amount of A

\qquad mol
009. 2 At a different temperature, another equilibrium mixture contains 0.30 mol of A , 0.25 mol of B and 0.020 mol of C in $350 \mathrm{~cm}^{3}$ of solution.

Calculate the value of the equilibrium constant K_{c}

Deduce the units of K_{c} [4 marks]
K_{c}

Units \qquad
[Turn over]

When an excess of water is added to chloroethanal, an equilibrium mixture is formed.
$\mathrm{ClCH}_{2} \mathrm{CHO}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons$
$\mathrm{ClCH}_{2} \mathrm{CH}(\mathrm{OH})_{2}(\mathrm{aq})$
An expression for an equilibrium constant (K) for the reaction under these conditions is
$K=\frac{\left[\mathrm{ClCH}_{2} \mathrm{CH}(\mathrm{OH})_{2}\right]}{\left[\mathrm{ClCH}_{2} \mathrm{CHO}\right]}$

| 0 | 9 | 3 |
| :--- | :--- | :--- | written without the concentration of water. [1 mark]

\qquad
\qquad
\qquad
\qquad

| 0 | 9.4 | Distilled water is added to 4.71 g of |
| :--- | :--- | :--- | chloroethanal ($M_{r}=78.5$) to make $50.0 \mathrm{~cm}^{3}$ of solution. The mixture is allowed to reach equilibrium.

The value of the equilibrium constant (K) is 37.0

Calculate the equilibrium concentration, in mol dm ${ }^{-3}$, of $\mathrm{ClCH}_{2} \mathrm{CH}(\mathrm{OH})_{2}$
[5 marks]

Concentration \qquad $\mathrm{mol} \mathrm{dm}^{-3}$
[Turn over]

\pm

ClCH_{2}

Complete the mechanism in FIGURE 6, on the opposite page, by adding
TWO curly arrows, all relevant charges and any lone pairs of electrons
involved. [3 marks]

0	9.6	When an excess of water is added to ethanal a similar nucleophilic

[Turn over]
64

	Additional page, if required. Write the question numbers in the left-hand margin.

	Additional page, if required. Write the question numbers in the left-hand margin.

BLANK PAGE

Copyright information

For confidentiality purposes, all acknowledgements of third - party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2020 AQA and its licensors. All rights reserved.

