AQA

Surname \qquad
Other Names \qquad
Centre Number \qquad
Candidate Number

Candidate Signature

A-level

CHEMISTRY
Paper 3
7405/3

Wednesday 19 June 2019 Morning
Time allowed: 2 hours
At the top of the page, write your surname and other names, your centre number, your candidate number and add your signature.
[Turn over]

For this paper you must have:

- the Periodic Table/Data Sheet, provided as an insert (enclosed)
- a ruler with millimetre measurements
- a scientific calculator, which you are expected to use where appropriate.

INSTRUCTIONS

- Use black ink or black ball-point pen.
- Answer ALL questions.
- You must answer the questions in the spaces provided. Do NOT write on blank pages.
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.

INFORMATION

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 90 .

ADVICE

- You are advised to spend about 70 minutes on SECTION A and 50 minutes on SECTION B.

DO NOT TURN OVER UNTIL TOLD TO DO SO

SECTION A

Answer ALL questions in this section.

| 0 | 1 |
| :--- | :--- | Sodium thiosulfate reacts with dilute hydrochloric acid as shown.

$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(\mathrm{aq})+2 \mathrm{HCl}(\mathrm{aq}) \longrightarrow$
$2 \mathrm{NaCl}(\mathrm{aq})+\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{S}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

| 0 | 1 | .1 |
| :--- | :--- | :--- | reaction. [1 mark]

\section*{| 0 | 1 | 2 |
| :--- | :--- | :--- |}

State the property of SO_{2} that causes pollution when it enters rivers.

Give an equation to show the reaction of SO_{2} with water. [2 marks]

Property \qquad

Equation
[Turn over]

0	1	3
3	Draw a diagram to show the shape of a	

Include any lone pairs of electrons.
State the $\mathrm{H}-\mathrm{O}-\mathrm{H}$ bond angle.
Explain this shape and bond angle. [4 marks]
Diagram

Bond angle \qquad
Explanation
\qquad
[Turn over]

| 0 | 1 | .4 |
| :--- | :--- | :--- | The initial rate of the reaction between sodium thiosulfate and hydrochloric acid can be monitored by measuring the time taken for a fixed amount of sulfur to be produced.

Describe an experiment to investigate the effect of temperature on the initial rate of this reaction.

Include

- a brief outline of your method
- how you will measure the time taken for a fixed amount of sulfur to be formed
- how you will present your results in graphical form
- a sketch of the graph that you would expect.
[6 marks]
\qquad
\qquad
\qquad

[Turn over]

10
[Turn over]

<div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">0</td>
<td style="text-align: left; border-bottom: none !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">2</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| 0 | 2 |
| :--- | :--- |</table-markdown></div>\quad This question is about sulfuric acid and its salts.

| 0 | 2 | .1 |
| :--- | :--- | :--- | of $\mathrm{H}_{2} \mathrm{SO}_{4}$

[1 mark]

02 . 2 In aqueous solution, sulfuric acid acts as a strong acid. The $\mathrm{H}_{2} \mathrm{SO}_{4}$ dissociates to form HSO_{4}^{-}ions and H^{+}ions.

The HSO_{4}^{-}ions act as a weak acid and dissociate to form $\mathrm{SO}_{4}{ }^{2-}$ ions and H^{+}ions.

Give an equation to show each stage in the dissociation of sulfuric acid in aqueous solution.

Include appropriate arrows in your equations. [2 marks]

Equation 1

\qquad

Equation 2 \qquad
[Turn over]

| 0 | 2 | 3 |
| :--- | :--- | :--- | A student is required to make $250 \mathrm{~cm}^{3}$ of an aqueous solution that contains an accurately measured mass of sodium hydrogensulfate (NaHSO_{4}).

Describe the method that the student should use to make this solution. [4 marks]
\qquad

[Turn over]

| 0 | 2 |
| :--- | :--- | :--- | A solution that contains 605 mg of NaHSO_{4} in $100 \mathrm{~cm}^{3}$ of solution has a pH of 1.72

Calculate the value of K_{a} for the hydrogensulfate ion $\left(\mathrm{HSO}_{4}^{-}\right)$that is behaving as a weak acid.
Give your answer to three significant figures.
State the units of K_{a}
[6 marks]
K_{a}

Units \qquad

| 0 | 2 |
| :--- | :--- | :--- | Some sodium sulfate is dissolved in a sample of the solution from question 02.4.

Explain why this increases the pH of the solution. [2 marks]
\qquad
\qquad
\qquad
\qquad
[Turn over]

| 0 | 3 |
| :--- | :--- | :--- | FIGURE 1 represents the cell used to measure the standard electrode potential for the $\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}$ electrode.

FIGURE 1

| 0 | 3 | 1 |
| :--- | :--- | :--- | [1 mark]

0	3	2

\qquad
\qquad

| 0 | 3 | 3 |
| :--- | :--- | :--- | Name the substance used as electrode B in FIGURE 1. [1 mark]

| 0 | 3 | 4 |
| :--- | :--- | :--- | Complete TABLE 1 to identify C, D and E from FIGURE 1. Include the essential conditions for each. [4 marks]

TABLE 1

	Identity	Conditions
C		
D		
E		

[Turn over]

| 0 | 3 | .5 |
| :--- | :--- | :--- | The standard electrode potential, E°, for the $\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}$ electrode is +0.77 V

Give the ionic equation for the overall reaction in the cell in FIGURE 1 on page 18.

State the change that needs to be made to the apparatus in FIGURE 1 to allow the cell reaction to go to completion. [2 marks]

Ionic equation

Change
\qquad
\qquad

BLANK PAGE

[Turn over]

| 0 | 3 | 6 |
| :--- | :--- | :--- | A student sets up a cell as shown in the cell representation.

$$
\mathrm{Zn}(\mathrm{~s})\left|\mathrm{Zn}{ }^{2+}(\mathrm{aq})\right|\left|\mathrm{Cu}^{2+}(\mathrm{aq})\right| \mathrm{Cu}(\mathrm{~s})
$$

The student measures the cell EMF, $E_{\text {cell }}$, with several different concentrations of Cu^{2+} ions and Zn^{2+} ions.

The results are shown in TABLE 2.

TABLE 2

Experiment	1	2	3	4	5
$\left[\mathrm{Zn}^{2+}\right]$ $\mathrm{mol} \mathrm{dm}^{-3}$	0.010	0.10	1.0	1.0	1.0
$\left[\mathrm{Cu}^{2+}\right]$ $/ \mathrm{mol} \mathrm{dm}^{-3}$	1.0	1.0	1.0	0.10	0.010
$\ln \left(\frac{\left[\mathrm{Zn}^{2+}\right]}{\left[\mathrm{Cu}^{2+}\right]}\right)$	-4.61	-2.30	0.00		4.61
$E_{\text {cell }} / \mathrm{V}$	1.16	1.13	1.10	1.07	1.04

Complete TABLE 2 to show the value missing from experiment 4.

Plot a graph of $E_{\text {cell }}$ against $\ln \left(\left[\mathrm{Zn}^{2+}\right] /\left[\mathrm{Cu}^{2+}\right]\right)$ on the grid opposite. [3 marks]

$E_{\text {cell }} / \mathrm{V}$

$$
\ln \left(\frac{\left[\mathrm{Zn}^{2+]}\right]}{\left[\mathrm{Cu}^{2+1}\right]}\right)
$$

[Turn over]

| 0 | 3 | .7 |
| :--- | :--- | :--- | concentration for this reaction.

$$
E_{\text {cell }}=\left(-4.3 \times 10^{-5} \times T\right) \ln \left(\frac{\left[\mathrm{Zn}^{2+}\right]}{\left[\mathrm{Cu}^{2+}\right]}\right)+E_{\text {cell }}^{\Theta}
$$

This equation is in the form of the equation for a straight line, $y=m x+c$

Calculate the gradient of your plotted line on the graph in question 03.6, on page 23. You must show your working.

Use your gradient to calculate the temperature, T, at which the measurements of $E_{\text {cell }}$ were taken.
(If you were unable to calculate a gradient you should use the value -0.016 V This is NOT the correct value.) [3 marks]

Gradient

V
T K

[Turn over]

Repeat of TABLE 2

Experiment	1	2	3	4	5
$\left[\mathrm{Zn}^{2+}\right]$ $\mathrm{mol} \mathrm{dm}^{-3}$	0.010	0.10	1.0	1.0	1.0
$\left[\mathrm{Cu}^{2+}\right]$ $/ \mathrm{mol} \mathrm{dm}^{-3}$	1.0	1.0	1.0	0.10	0.010
$\ln \left(\frac{\left[\mathrm{Zn}^{2+}\right]}{\left[\mathrm{Cu}^{2+}\right]}\right)$	-4.61	-2.30	0.00		4.61
$E_{\text {cell }} / \mathrm{V}$	1.16	1.13	1.10	1.07	1.04

| 0 | 3 | 8 |
| :--- | :--- | :--- | potential of the $\mathrm{Cu}^{2+} / \mathrm{Cu}$ electrode is +0.33 V

Use data from TABLE 2 in question 03.6 to calculate the electrode potential for the $\mathbf{Z n}^{\mathbf{2}+/ \mathbf{Z n}}$ electrode in experiment 2.

Give one reason why your calculated value is different from the standard electrode potential for $\mathbf{Z n}^{\mathbf{2}+} / \mathbf{Z n}$ electrode. [2 marks]

Electrode potential \qquad

Reason

\qquad
\qquad
\qquad
\qquad
\square
[Turn over]

BLANK PAGE

| 0 | 4 | Ethanal reacts with potassium cyanide, |
| :--- | :--- | :--- | followed by dilute acid, to form 2-hydroxypropanenitrile.

0	4	.1
1		

[Turn over]

\section*{| 0 | 4 | 2 |
| :--- | :--- | :--- |
| The 2-hydroxypropanenitrile formed by the | | |} reaction in question 04.1 is a mixture of equal amounts of two isomers.

State the name of this type of mixture.
Explain how the structure of ethanal leads to the formation of two isomers.

Draw 3D representations of the two isomers to show the relationship between them.
[5 marks]
Name \qquad
\qquad
Explanation
\qquad
\qquad
\qquad
\qquad
\qquad

3D representations
[Turn over]

0	4	3
3	$2-H y d r o x y p r o p a n e n i t r i l e ~ c a n ~ b e ~ u s e d ~ i n ~ t h e ~$	

Suggest a suitable reagent and conditions for the conversion of 2-hydroxypropanenitrile into acrylonitrile. [2 marks]

Reagent \qquad

Conditions \qquad

0	4.	4
Draw a section of the polymer polyacrylonitrile,		

| 0 | 5 |
| :--- | :--- |\quad The percentage by mass of iron in a steel wire is determined by a student.

The student

- reacts 680 mg of the wire with an excess of sulfuric acid, so that all of the iron in the wire forms $\mathrm{Fe}^{2+}(\mathrm{aq})$
- makes up the volume of the $\mathrm{Fe}^{2+}(\mathrm{aq})$ solution to exactly $100 \mathrm{~cm}^{3}$
- takes $25.0 \mathrm{~cm}^{3}$ portions of the $\mathrm{Fe}^{2+}(\mathrm{aq})$ solution
- titrates each portion with $0.0200 \mathrm{~mol} \mathrm{dm}^{-3}$ potassium manganate(VII) solution.

| 0 | 5. | .1 |
| :--- | :--- | :--- | Give the equation for the reaction between iron and sulfuric acid. [1 mark]

[Turn over]

\section*{| 0 | 5 | 2 |
| :--- | :--- | :--- | The titration results are shown in TABLE 3.}

TABLE 3

	1	2	3
Final volume $/ \mathrm{cm}^{3}$	22.90	45.60	22.60
Initial volume $/ \mathrm{cm}^{3}$	0.00	22.90	0.00
Titre $/ \mathrm{cm}^{3}$	22.90	22.70	22.60

Calculate the mean titre. [1 mark]

Mean titre cm^{3}

| 0 | 5 | 3 |
| :--- | :--- | :--- | Give the overall ionic equation for the oxidation of Fe^{2+} by manganate(VII) ions, in acidic conditions. [1 mark]

| 0 | 5 | .4 |
| :--- | :--- | :--- | the titration. [1 mark]

| 0 | 5 | 5 |
| :--- | :--- | :--- | stages of the method. [1 mark]

Taking the $25.0 \mathrm{~cm}^{3}$ portions

Adding the potassium manganate(VII) solution
[Turn over]

| 0 | 5 | 6 |
| :--- | :--- | :--- | The balance used to weigh the 680 mg of iron wire has an uncertainty of $\pm 0.005 \mathrm{~g}$

A container was weighed and its mass was subtracted from the total mass of the container and wire.

Calculate the percentage uncertainty in using the balance. [1 mark]
\% uncertainty \qquad
\square

BLANK PAGE

[Turn over]

SECTION B

Answer ALL questions in this section.
Only ONE answer per question is allowed.
For each answer completely fill in the circle alongside the appropriate answer.

CORRECT METHOD

WRONG METHODS

If you want to change your answer you must cross out your original answer as shown.

If you wish to return to an answer previously crossed out, ring the answer you now wish to select as shown.

You may do your working in the blank space around each question but this will not be marked.
Do NOT use additional sheets for this working.

| 0 | 6 | Which amount of sodium hydroxide would react |
| :--- | :--- | :--- | exactly with 7.5 g of a diprotic acid, $\mathrm{H}_{2} \mathrm{~A}$

($M_{\mathrm{r}}=150$)? [1 mark]
0
○
B $\quad 100 \mathrm{~cm}^{3}$ of $0.50 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}(\mathrm{aq})$
0
C $\quad 100 \mathrm{~cm}^{3}$ of $1.0 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}(\mathrm{aq})$
O
D $100 \mathrm{~cm}^{3}$ of $2.0 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}(\mathrm{aq})$
[Turn over]

| 0 | 7 |
| :--- | :--- | according to the equation

$$
\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+2 \mathrm{KI}(\mathrm{aq}) \rightarrow \mathrm{PbI}_{2}(\mathrm{~s})+2 \mathrm{KNO}_{3}(\mathrm{aq})
$$

In an experiment, $25.0 \mathrm{~cm}^{3}$ of a $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of each compound are mixed together.

Which amount, in mol, of lead(II) iodide is formed? [1 mark]
0
A $\quad 1.25 \times 10^{-3}$

0
B $\quad 2.50 \times 10^{-3}$
$\bigcirc \quad C \quad 1.25 \times 10^{-2}$
$\bigcirc \quad D \quad 2.50 \times 10^{-2}$

| 0 | 8 | Nitrogen dioxide is produced from ammonia and |
| :--- | :--- | :--- | air as shown in these equations

$4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
$\Delta H=-909 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
$\Delta H=-115 \mathrm{~kJ} \mathrm{~mol}^{-1}$
What is the enthalpy change (in $\mathrm{kJ} \mathrm{mol}^{-1}$) for the following reaction?
$4 \mathrm{NH}_{3}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
[1 mark]
$\bigcirc \quad A \quad-679$B $\quad \mathbf{- 7 9 4}$C -1024D -1139
[Turn over]

| 0 | 9 | Which change leads to a higher concentration of |
| :--- | :--- | :--- | SO_{3} in this equilibrium mixture?

$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g}) \quad \Delta H=-188 \mathrm{~kJ} \mathrm{~mol}^{-1}$
[1 mark]
$\bigcirc \quad$ A higher concentration of $\mathrm{O}_{\mathbf{2}}$
○ B higher temperature
$\bigcirc \quad \mathrm{C}$ lower pressure
\bigcirc D use of a catalyst

1	0
The results of an investigation of the reaction	

Experiment	Initial [P] $/ \mathrm{mol} \mathrm{dm}^{-3}$	Initial [Q] $/ \mathrm{mol} \mathrm{dm}^{-3}$	Initial rate $/ \mathrm{mol} \mathrm{dm}^{-3} \mathrm{~m}^{-1}$
1	0.200	0.500	0.400
2	0.600	To be calculated	0.800

The rate equation is: rate $=k[P][Q]^{2}$
What is the initial concentration of Q in experiment 2? [1 mark]

A 0.167

B 0.333

C 0.408

D 0.612
[Turn over]

11 The equation for the reaction between sulfur dioxide and oxygen is shown.

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

In an experiment, 2.00 mol of sulfur dioxide are mixed with 2.00 mol of oxygen. The total amount of the three gases at equilibrium is 3.40 mol

What is the mole fraction of sulfur trioxide in the equilibrium mixture? [1 mark]

A 0.176

B 0.353C 0.600D $\quad 1.200$

| 1 | 2 | Nitrogen reacts with hydrogen in this exothermic |
| :--- | :--- | :--- | reaction

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

Which change increases the equilibrium yield of ammonia but has no effect on the value of the equilibrium constant K_{p} ? [1 mark]

A Add a catalyst

B Increase the partial pressure of nitrogenC Decrease the temperature

D Decrease the total pressure
[Turn over]

| 1 | 3 |
| :--- | :--- | The E^{\ominus} values for two electrodes are shown.

$$
\begin{aligned}
& \mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \longrightarrow \mathrm{Fe}(\mathrm{~s}) \mathrm{E}^{\theta}=-0.44 \mathrm{~V} \\
& \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{~s}) E^{\theta}=+0.34 \mathrm{~V}
\end{aligned}
$$

What is the EMF of the cell
$\mathrm{Fe}(\mathrm{s})\left|\mathrm{Fe}^{2+}(\mathrm{aq})\right|\left|\mathrm{Cu}^{2+}(\mathrm{aq})\right| \mathrm{Cu}(\mathrm{s})$? [1 mark]
$\bigcirc \quad \mathrm{A} \quad+\mathbf{0 . 7 8} \mathrm{V}$

○ B $\quad \mathbf{+ 0 . 1 0} \mathbf{V}$
$\bigcirc \quad \mathrm{C} \quad-\mathbf{0 . 1 0 \mathrm { V }}$
\bigcirc
D $\quad-0.78 \mathrm{~V}$

| 1 | 4 | Which atom has the greatest first ionisation |
| :--- | :--- | :--- | energy? [1 mark]

0
A H

B HeC LiD Ne
[Turn over]

| 1 | 5 |
| :--- | :--- | :--- | What is the correct observation when barium metal is added to an excess of water? [1 mark]

\bigcirc A Forms a colourless solution onlyB Forms a colourless solution and effervesces

C Forms a white precipitate only

D Forms a white precipitate and effervesces

| 1 | 6 | An aqueous solution of a salt gives a white |
| :--- | :--- | :--- | precipitate when mixed with aqueous silver nitrate and when mixed with dilute sulfuric acid.

Which could be the formula of the salt? [1 mark]

$\bigcirc \quad \mathrm{A} \quad \mathrm{BaCl}_{2}$

B $\quad\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
0
C KCl
0
D $\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}$
[Turn over]

| 1 | 7 | Which statement is NOT correct about the |
| :--- | :--- | :--- | trends in properties of the hydrogen halides from HCl to HI ? [1 mark]

$\bigcirc \quad$ A The boiling points decrease.

B The bond dissociation energy of $\mathrm{H}-\mathrm{X}$ decreases.

C The polarity of the $\mathrm{H}-\mathrm{X}$ bond decreases.

O
D They are more easily oxidised in aqueous solutions.

| 1 | 8 |
| :--- | :--- | What is observed when concentrated hydrochloric acid is added to an aqueous solution of CuSO_{4} until no further change occurs? [1 mark]

A A colourless gas is evolved and a precipitate forms.

B A colourless gas is evolved and no precipitate forms.

C A precipitate forms that dissolves in an excess of concentrated hydrochloric acid.

D The solution changes colour and no precipitate forms.
[Turn over]

| 1 | 9 | What is the most suitable reagent for detecting |
| :--- | :--- | :--- | the presence of carbonate ions in the presence of an excess of sulfate ions? [1 mark]

A dilute $\mathrm{NaOH}(\mathrm{aq})$$B$ dilute $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$

0
D $\quad \mathrm{NaCl}(\mathrm{aq})$

| 2 | 0 | Methylbenzene reacts with a mixture of |
| :--- | :--- | :--- | concentrated nitric acid and concentrated sulfuric acid.

What is the name of the mechanism for this reaction? [1 mark]

A Electrophilic addition

B Electrophilic substitution

C Nucleophilic additionD Nucleophilic substitution

[Turn over]

A possible synthesis of a compound found in jasmine flower oil is
-

Which compound is formed when 1-phenylethanol reacts with
acidified potassium dichromate(VI)? [1 mark]

\mathbf{N}
\mathbf{n}

Three reagents are added separately to four organic compounds.

		Sodium hydrogen carbonate	Acidified potassium dichromate(VI)	Tollens' reagent
A	Propan-1-ol	effervescence	orange solution turns green	no visible change
B	Propanal	no visible change	orange solution turns green	silver mirror
C	Propanone	no visible change	no visible change	silver mirror
D	Propanoic acid	effervescence	no visible change	silver mirror

0000
Which compound is formed by acid hydrolysis of
phenylmethyl ethanoate? [1 mark]

$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}$
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCH}_{3}$
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$

∞

[Turn over]

| 2 | 5 | A student is required to dry a liquid sample of |
| :--- | :--- | :--- | pentanoic acid.

Which drying agent is suitable? [1 mark]A Calcium oxide
C Potassium hydroxide
O
D Potassium carbonate

| 2 | 6 | The reaction between propanoyl chloride and |
| :--- | :--- | :--- | benzene is an example of acylation.

Which is a correct representation of part of the mechanism of this reaction? [1 mark]

A

C

\bigcirc

D

[Turn over]

| 2 | 7 | Methylamine reacts with bromoethane by |
| :--- | :--- | :--- | substitution to produce a mixture of products.

Which compound is NOT a possible product of this reaction? [1 mark]

B $\quad\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NCH}_{3}$
0
C $\left[\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{NCH}_{3}\right]^{+} \mathrm{Br}$

0
D $\left[\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right]^{+} \mathrm{Br}^{-}$

| 2 | 8 |
| :--- | :--- | :--- | its chains? [1 mark]

0
A KevlarB PolytheneC PVC
0
D Terylene
[Turn over]

| 2 | 9 | Which structure shows part of a peptide link in a |
| :--- | :--- | :--- | protein? [1 mark]

\bigcirc
A

$\bigcirc \quad \mathbf{B}$

$\bigcirc \quad \begin{array}{r}\mathrm{D} \\ \hline \boldsymbol{O} \\ \mathbf{O} \\ \hline \mathbf{H}\end{array}$

| 3 | 0 | Two strands of DNA are linked together by |
| :--- | :--- | :--- | hydrogen bonding between bases on each strand.

Which row shows the number of hydrogen bonds between the pair of bases?
Use the Data Booklet to help you answer this question. [1 mark]

		Base 1	Base 2	Number of hydrogen bonds
\bigcirc	A	adenine	guanine	2
\bigcirc	B	cytosine	thymine	2
\bigcirc	C	guanine	cytosine	3
\bigcirc	D	adenine	thymine	3

[Turn over]

| 3 | 1 | Which is NOT responsible for conduction of |
| :--- | :--- | :--- | electricity? [1 mark]

A
 The sodium ions in molten sodium chloride

B The electrons between layers of carbon atoms in graphite

C The bonding electrons in a metal

D
The lone pair electrons on water molecules

| 3 | 2 | In the UK industrial ethanol is now produced by |
| :--- | :--- | :--- | the direct hydration of ethene. This process has largely replaced the fermentation method.

Which is a likely reason for this change of method? [1 mark]

A The direct hydration route produces purer ethanol.

B The direct hydration route employs milder conditions.

C The direct hydration route does NOT use a catalyst.

D The direct hydration route produces ethanol by a slower reaction.
[Turn over]

| 3 | 3 | Which alkene reacts with hydrogen bromide to |
| :--- | :--- | :--- | give 2-bromo-3-methylbutane as the major product? [1 mark]

$\bigcirc \quad A \quad\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CHCH}_{3}$
$\bigcirc \quad B \quad \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}_{3}$
0
C $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)=\mathrm{CH}_{2}$
\bigcirc D $\quad\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}=\mathrm{CH}_{2}$

| 3 | 4 | Which compound can be purified by forming a |
| :--- | :--- | :--- | hot aqueous solution that recrystallises on cooling? [1 mark]

A CyclohexeneB Ethanoic acid

C Phenylamine

D Benzoic acid

[Turn over]

| 3 | 5 | Use the Data Booklet to help you answer this |
| :--- | :--- | :--- | question

Which is the main aspartic acid species present in an aqueous solution at $\mathrm{pH}=14$? [1 mark]

END OF QUESTIONS

BLANK PAGE

BLANK PAGE

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
Section B	
TOTAL	

Copyright Information

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third-party copyright material are published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2019 AQA and its licensors. All rights reserved.
IB/M/EB/Jun19/7405/3/E2

70

