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Write your Centre Number and Candidate Number on the Answer Booklet provided.

Answer all six questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

You are permitted to use a graphic or scientific calculator in this paper.
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e
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Answer all six questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

1	 Find the general solution of the equation

	 tan (2θ + π–
4
) cot (π–

3
 – 3θ) = 1 [6]

2	 (i)	 Prove, by the method of partial fractions, that

			   x3 – 4x2 + 9x + 10		  x		  2			   ————————	 ≡	—–—	+	———	 [8]
			   (x2 + 5)(x – 3)2		  x2 + 5		  (x – 3)2

	 (ii)	 Hence solve the differential equation

		

		  given that y = –2 when x = 4	 [10]

3	 (i)	 Use Maclaurin’s theorem to write out the series expansion for ln(1 + x) up to 
the term in x5	 [5]

	 (ii)	 Hence write out the series expansion for

					     1 + x			   ln		  –——		 [3]
				    (	1 – x	)	

			   n	 (iii)	Hence find an approximation for ln 2 in the form	——	, where n is a natural number.	 [3]
			   1215	
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4	 (a)	 Find the exact integer value of

			   (cos π–
7

 + i sin π–
7
)3

			   ———————	 [4]
			   (cos π–

7
 – i sin π–

7
)4

	 (b)	 Find the roots of the equation

		  z4 + 4 = 0

		  and plot them on an Argand diagram.	 [8]

5	 (i)	 If A =         prove by the method of mathematical induction that

		

		  where n is a positive integer and x  1	 [7]

	 (ii)		  [2]
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  x2  y2

6 The ellipse –– + –– = 1 is shown in Fig. 1 below.
  4  3

 

Fig. 1

 (i) Prove that S (1,0) is a focus of the ellipse and that the line x = 4 is a directrix. [4]

 (ii) Verify that the point P on the ellipse can be represented parametrically as

(2 cos θ, √
–
3 sin θ) [2]

 (iii) Show that the equation of the tangent to the ellipse at P can be written as

   

x
–
2
 cos θ +

   

y
—
√
–
3 

sin θ = 1 [6]

 The point where the tangent at P meets the directrix x = 4 is Q.

 (iv) Prove that PS
�
Q is a right angle. [7]
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