Rewarding Learning

ADVANCED
General Certificate of Education
2012

Mathematics

Assessment Unit C3
 assessing
 Module C3: Core Mathematics 3

[AMC31]

FRIDAY 18 MAY, MORNING

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number on the Answer Booklet provided.
Answer all eight questions.
Show clearly the full development of your answers.
Answers should be given to three significant figures unless otherwise stated.
You are permitted to use a graphic or scientific calculator in this paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.
A copy of the Mathematical Formulae and Tables booklet is provided.
Throughout the paper the logarithmic notation used is $\ln z$ where it is noted that $\ln z \equiv \log _{\mathrm{e}} z$

Answer all eight questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

1 (a) Solve

$$
\begin{equation*}
|2 x+3|=7 \tag{4}
\end{equation*}
$$

(b) Simplify the expression

$$
\frac{x^{2}+4 x-21}{x^{2}-25} \div \frac{x+7}{x-5}
$$

writing it in the form $\frac{x+a}{x+b}$, where a and b are integers.

2 (a) Express $\frac{x-26}{(x+2)(x-5)}$ in partial fractions.
(b) Find the first 3 non-zero terms in the binomial expansion of

$$
\frac{1}{1-3 x}
$$

3 A curve is described by the parametric equations

$$
x=2 t-1 \quad y=6-\frac{1}{t}
$$

(i) Find the Cartesian equation of this curve.
(ii) Find the point at which this curve crosses the x-axis.

4 (a) The cross-section of an earring can be modelled by the area between the curve

$$
y=1-\frac{1}{x},
$$

the line $x=3$ and the x-axis as shown in Fig. 1 below.

Fig. 1

Find the exact cross-sectional area of the earring.
(b) Find

$$
\int 5 x-\operatorname{cosec}^{2} x \mathrm{~d} x
$$

(c) Find

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{\tan 2 x}{x-3}\right)
$$

5 Fig. 2 below shows the graph of the function $y=\mathrm{f}(x)$.

Fig. 2

Fig. 3 below shows the graph of the function $y=a \mathrm{f}(b x)$.

Fig. 3
(i) Write down the values of a and b.
(ii) Sketch the graph of the function $y=-\mathrm{f}(x-2)$, clearly showing the images of $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D .

6 (i) Show that the equation

$$
\begin{equation*}
\mathrm{e}^{-x}-\sin x=0 \tag{3}
\end{equation*}
$$

has a solution between $x=0$ and $x=\frac{\pi}{2}$
(ii) By taking $x=0$ as a first approximation to this solution and using the Newton-Raphson method twice, find a better approximation.

7 Find the equation of the normal to the curve

$$
y=x \sqrt{1+3 x}-\ln (3 x-2)
$$

at the point on the curve where $x=1$,
giving your answer in the form $a x+b y+c=0$ where a, b and c are integers.

8 (a) Prove that

$$
\left(\operatorname{cosec}^{2} x-1\right)\left(\sec ^{2} x-1\right) \equiv 1
$$

(b) Solve the equation

$$
\begin{equation*}
\sec \left(2 x-\frac{\pi}{4}\right)=-2 \tag{8}
\end{equation*}
$$

for $0<x<2 \pi$

THIS IS THE END OF THE QUESTION PAPER

