Rewarding Learning

ADVANCED
General Certificate of Education
2012

Mathematics

Assessment Unit F2
 assessing
 Module FP2: Further Pure Mathematics 2

[AMF21]

THURSDAY 31 MAY, MORNING

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number on the Answer Booklet provided.
Answer all seven questions.
Show clearly the full development of your answers.
Answers should be given to three significant figures unless otherwise stated.
You are permitted to use a graphic or scientific calculator in this paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.
A copy of the Mathematical Formulae and Tables booklet is provided.
Throughout the paper the logarithmic notation used is $\ln z$ where it is noted that $\ln z \equiv \log _{\mathrm{e}} z$
$7132.02 \mathbf{R}$

Answer all seven questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

1 Show that

$$
\begin{equation*}
\sum_{k=1}^{n}(k-1) k(k+1)=\frac{1}{4}(n-1) n(n+1)(n+2) \tag{4}
\end{equation*}
$$

2 Find, in radians, the general solution of the equation

$$
\begin{equation*}
6 \sin \theta \cos \theta-2 \cos \theta+3 \sin \theta-1=0 \tag{7}
\end{equation*}
$$

3 (i) Using Maclaurin's theorem find a series expansion for $\ln (1+x)$ up to and including the term in x^{5}
(ii) Hence, find a series expansion for $\ln \left(\frac{1+x}{1-x}\right)$ up to and including the term in x^{5}
(iii) Using the expansion in part (ii) and substituting $x=\frac{2}{3}$, find an approximation for $\ln 5$

4 Find, in the form $p \mathrm{e}^{\mathrm{i} q}$, the roots of the equation

$$
16 z^{4}=81\left(\cos \frac{2 \pi}{3}+\mathrm{i} \sin \frac{2 \pi}{3}\right)
$$

and plot them on an Argand diagram.

5 (i) Use partial fractions to show that

$$
\begin{equation*}
\frac{5}{\left(2+x^{2}\right)\left(3+4 x^{2}\right)} \equiv \frac{4}{3+4 x^{2}}-\frac{1}{2+x^{2}} \tag{6}
\end{equation*}
$$

(ii) Hence, solve the differential equation

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{y}{x}=\frac{5}{\left(2+x^{2}\right)\left(3+4 x^{2}\right)} \tag{8}
\end{equation*}
$$

6 (i) It is required to prove by mathematical induction that a proposition $\mathrm{P}(n)$ is true for all even natural numbers n. It has been proved that

$$
\mathrm{P}(k) \Rightarrow \mathrm{P}(k+2)
$$

What else must be shown to complete the proof?
(ii) Prove, for all even natural numbers n, that

$$
\begin{equation*}
\frac{\mathrm{d}^{n}}{\mathrm{~d} x^{n}} \sin (3 x)=(-1)^{\frac{n}{2}} 3^{n} \sin (3 x) \tag{9}
\end{equation*}
$$

7 The ellipse $\frac{x^{2}}{29^{2}}+\frac{y^{2}}{21^{2}}=1$ has a general point $\mathrm{P}(29 \cos \theta, 21 \sin \theta)$ and a focus F . It is sketched in Fig. 1 below:

Fig. 1
(i) Show that the eccentricity of this ellipse is given by $e=\frac{20}{29}$
(ii) Show that the equation of the normal to the ellipse at P is

$$
\begin{equation*}
21 y \cos \theta-29 x \sin \theta+400 \sin \theta \cos \theta=0 \tag{6}
\end{equation*}
$$

The normal to the ellipse at P meets the x-axis at the point Q .
(iii) Show that the point Q is $\left(\frac{400}{29} \cos \theta, 0\right)$.
(iv) Hence, prove that $\mathrm{FQ}=e \mathrm{FP}$, where e is the eccentricity of the ellipse.

THIS IS THE END OF THE QUESTION PAPER

