Mathematics

Assessment Unit C3
 assessing
 Module C3: Core Mathematics 3

[AMC31]

FRIDAY 20 MAY, AFTERNOON

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number on the Answer Booklet provided.
Answer all eight questions.
Show clearly the full development of your answers.
Answers should be given to three significant figures unless otherwise stated.
You are permitted to use a graphic or scientific calculator in this paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.
A copy of the Mathematical Formulae and Tables booklet is provided.
Throughout the paper the logarithmic notation used is $\ln z$ where it is noted that $\ln z \equiv \log _{\mathrm{e}} z$

Answer all eight questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

1 Solve the equation

$$
2 \sec ^{2} \theta=3+\tan \theta
$$

$$
\begin{equation*}
\text { for } 0^{\circ} \leqslant \theta \leqslant 180^{\circ} \tag{6}
\end{equation*}
$$

2 (i) Use the binomial theorem to find, in ascending powers of x, the expansion of

$$
(1+2 x)^{-\frac{1}{2}}
$$

as far as the term in x^{3}
(ii) State the range of values of x for which the expansion is valid.

3 (a) On separate diagrams sketch the graphs of
(i) $y=|x+2|$
(ii) $y=\mathrm{e}^{x}+2$
(iii) $y=|\ln x|$
labelling any relevant points.
(b) Write

$$
\frac{x^{3}+1}{x^{3}-x^{2}}
$$

in partial fractions.

4 Fig. 1 below shows the logo for an opticians.

Fig. 1
The area of the logo can be modelled as the area bounded by the curves $y=\sin x$ and $y=-\sin x$ between $x=0$ and $x=2 \pi$.

Find this area.

5 (i) Find the gradient of the curve

$$
y=x^{2}+x \ln x \quad x>0
$$

at any point (x, y).
(ii) Show that a stationary point of the curve occurs between $x=0.2$ and $x=0.3$
(iii) By taking $x=0.2$ as a first approximation to the x coordinate of this stationary point and applying the Newton-Raphson method once, find a better approximation to this coordinate.

6 A sample of radium loses mass at a rate of 4\% per century.
Find, in years, the half-life of radium, i.e. the time taken for its mass to be halved.

7 (i) Show that

$$
\left(x^{2}-x+2\right)
$$

is positive for all values of x.
(ii) Given that

$$
y=\left(x^{2}+2\right) \mathrm{e}^{-2 x}
$$

show that $\frac{\mathrm{d} y}{\mathrm{~d} x}<0$ for all values of x.

8 (a) Differentiate with respect to x
(i) $4 \sin x-\ln \left(1-x^{2}\right)$
(ii) $\frac{\operatorname{cosec}^{2} x}{\tan 3 x}$
(b) Show that

$$
\begin{equation*}
\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{4}{3-3 \sin ^{2} 2 x} \mathrm{~d} x=\frac{-4 \sqrt{ } 3}{3} \tag{5}
\end{equation*}
$$

THIS IS THE END OF THE QUESTION PAPER

