

General Certificate of Secondary Education 2013

Science: Chemistry

Unit C1

Higher Tier

[GCH12]

GCH12

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

MONDAY 10 JUNE, AFTERNOON

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.

You must answer the questions in the spaces provided. Do not write outside the box, around each page or on blank pages.

Complete in blue or black ink only. **Do not write with a gel pen**. Answer **all six** questions.

INFORMATION FOR CANDIDATES

The total mark for this paper is **100**. Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question. Quality of written communication will be assessed in question **2(b)(iii)**. A Data Leaflet, which includes a Periodic Table of the Elements, is included in this question paper.

7950

www.StudentBounty.com

									0.01	nonto							
							Н				Г				1	1	He
Li											-			N	0		Ne
Na							_					AI		P	S		Ar
K							Fe			Cu						Br	
RD																	
JSE FOL	ONLY LOWIN (i) (ii)	Nam press Write temp	ELE JEST ne or sure e the berat	EMEN FION ne nc s. e sym ture a	nbol f	or an oressu	vn Al hich i elem ure. ment.	s a so ent w	E TO olid a /hich	t roon	yer '	THE perat	m	ind [[1]	Examin Marks	Rema
	(iv) Name one element which is a colourless gas at room temperature and pressure. [1]																
	(v) Name one transition metal. [1]																
	(vi)	Nam	ie th	e mo	ost rea	active	e elen	nent i	n Gro	oup 1.							

P

	(vii)	Name the element which has atoms with an electronic configuration 2, 8, 8.		Examiner Only Marks Remark
			_ [1]	
	(viii) Name one element which sublimes on heating.	_ [1]	
(b)	The	element chlorine is found in Group 7 of the Periodic Table.		
	(i)	What name is given to Group 7 of the Periodic Table?		
			_ [1]	
	(ii)	What is the colour and physical state of chlorine at room temperature and pressure?		
		Colour:	[0]	
			_ [4]	
	(111)	Explain why chlorine should be used in a fume cupboard.	_ [1]	
(c)	Chlo	prine reacts with solutions containing iodide ions.		
	(i)	Write a balanced symbol equation for the reaction between chlorine and potassium iodide.		
			_ [3]	
	(ii)	What would be observed when chlorine gas is bubbled into a solution of potassium iodide?		
				Total Question 1
			[2]	
7950				[Turn over

2 Ski resorts use artificial snow to supplement natural snow. Artificial snow is made by forcing water and pressurised air through a snow cannon into cold air. The water droplets crystallise to form artificial snow.

© Gustoimages / Science Photo Library

- (a) Water contains the elements hydrogen and oxygen.
 - (i) Complete the table below to give information about atoms of hydrogen and oxygen.

Atom	Atomic number	Mass number	Number of protons	Number of neutrons	Number of electrons
¹ ₁ H					
¹⁶ 80					
	I				[2]

7950

P

Examiner Only

Marks Remark

CCE Remarking i			
20 J. Lawring			
CCE Anwarding I		(ii)	Use a dot and cro
200 g Learning			(H_2O) . (Show only
CCE Reventing i			
200 Learning			
CCE Rewarding I			
200 Learning			
CCE Rewarding i			
CCE Reventing (
CE Atmanding I			
Ð			
CE Remarking			
20			
Œ			
Ð		(iii)	Artificial snow pro
Œ			contains calcium i
D			Draw a labelled dia
Œ			subatomic particle
			(Calcium atomic n
Œ			
Rewarding I			
Ge			
Researching I			
CCE			
Revearching i			
(Car			
Rewarding I			
Contenting			
Aurording i			
Leeming			
Rewarding			
Rewarding			
Learning			
Rewarding i			
Learning			
Rewarding I	7950		
E Loeming			
CCE Rewarding I			
E Lauring			
CCE Rewarding (11
20 g Looming			
CCE Rewarding I			
30			

, Leeming

[3]	
amber = 20; mass number = 40)	
gram of a calcium ion stating the number of each present and showing the position of each particle.	
luction works most effectively if the water used	
[3]	
outer shell electrons.)	

	© Dorling Kinderslev PE / Thinkstock	
(i)	Steel is an alloy. What is meant by the term alloy?	
(ii	Graphite is one of the allotropes of carbon. What are allotropes?	
	[2]	

Revertit

Research 2 Learning Research

200 y Levening

y Learning Researching 2 Learning

D

	Physical properties of graphite	
	High melting point	
	Soft	
	Good conductor of electricity	
scienti	fic terms.	

(c)	Inst the	tead of steel, aluminium can be used on the edges of skis to make m lighter. The bonding within aluminium metal is metallic bonding.	Examiner Only Marks Remark
	(i)	What is metallic bonding?	
		[2]	
	(ii)	Explain why metals such as aluminium are malleable.	
		[2]	
			Total Question 2
7950			

www.StudentBounty.com

Reserch

3	(a)	Lim proo	estone, CaCO ₃ , is used as a building material and in the duction of lime.		Examiner Only Marks Remark
		Wh and	en heated strongly calcium carbonate breaks down to produce I carbon dioxide gas as shown in the following equation.	ime	
			$CaCO_3 \rightarrow CaO + CO_2$		
		(i)	What name is given to this type of reaction?		
				[2]	
		(ii)	Calculate the maximum mass of calcium oxide produced when 600g of calcium carbonate are heated strongly.		
			(Relative atomic masses: $C = 12$; $O = 16$; $Ca = 40$)		
			g	[5]	
					[Turn over

www.StudentBounty.com

(b) The metal titanium reacts with oxygen to form an oxide of titanium. In an experiment to determine the formula of the oxide, a sample of titanium metal was heated in a crucible with a tightly fitting lid. During heating the lid was lifted from time to time.

The following results were obtained:

Mass of crucible	18.34 g
Mass of crucible + titanium metal	19.36g
Mass of crucible + oxide	20.04 g

(i) Suggest why it was necessary to lift the crucible lid during heating.

_ [1]

7950

R

Examiner Only

Marks Remark

(ii)	Use the results of the experiment to determine the empirical formula for the oxide of titanium.	Examiner Only Marks Remark
	(Relative atomic masses: O = 16; Ti = 48)	
	Empirical formula [6]	Total Question 3
		[Turn ove

www.StudentBounty.com

Leeming

a 20 2 Loaming a Ð

> > R

Examiner Only

Marks Remark

4 Acids and alkalis react together to form a salt and water.

- (a) The following experiment was carried out to determine if the reaction between hydrochloric acid and sodium hydroxide was exothermic.
 - 25 cm³ of 1.0 mol/dm³ hydrochloric acid were measured out and placed in a polystyrene cup.
 - The temperature of the hydrochloric acid was recorded.
 - 25 cm³ of 1.0 mol/dm³ sodium hydroxide solution were then added gradually in 5 cm³ portions to the hydrochloric acid, stirring after each addition.

The temperature of the reaction mixture was recorded and the results are shown in the table below.

Volume of sodium hydroxide added/cm ³	0	5	10	15	20	25
Temperature of reaction mixture/°C	20.5	21.5	22.5	23.5	25.5	28.0

(i) On the axes opposite, plot a graph of temperature against volume of sodium hydroxide added using the results in the table above.

	(i)	Describe the steps which should be taken to prepare pure, drv	
	. ,	crystals of potassium sulfate from the reaction between sulfuric acid and potassium hydroxide solution using a named indicator.	
		[6]	
)			

Write a balanced symbol equation for the reaction between potassium hydroxide and sulfuric acid.		Examir Marks	er Only Remark
	_ [3]		
		Total Q	uestion 4
		IT ur	n ove

5	(a)	A st nitra	udent used the following method to find the solubility of potassium ate at room temperature (20 °C).	Examiner Only Marks Rema
		Plac nitra Plac burr solic	ce 25g of deionised water in a beaker and add solid potassium ate while stirring until no more will dissolve. Filter the mixture. ce the filtrate in an evaporating basin and heat using a Bunsen ner until all of the water has been removed. Measure the mass of d obtained.	
		(i)	What is meant by the term solubility?	
			[4]	
		(ii)	Suggest why the mixture was filtered.	
		(iii)	Draw a labelled diagram of the assembled apparatus used to heat the filtrate.	
			[3]	

3

(b)	The table below shows the solubility values of potassium nitrate
	between 0 °C and 100 °C.

The bet	e table below shows the so ween 0°C and 100°C.	olubility	value:	s of pot	assium	nitrate	!	Examir Marks	ner Only Remark
	Temperature/°C	0	20	40	60	80	100		
	Solubility of potassium nitrate (g/100 g water)	13.5	31.5	62.5	108	168	245		
(i)	72 g of potassium nitrate After stirring, the solution nitrate remained undisso nitrate which did not diss	were a was s lved. C olve.	added t aturate alculat	o 100 g d and s e the m	of wate some p nass of	er at 40 otassiu potass)°C. m ium		
	Mass of pot	assium	nitrate	9			_g [2]		
(ii)	Calculate the mass of po if a saturated solution co 60 °C to 40 °C. You should show all yo	otassiur ntainin o ur woi	n nitrat g 500 g 'king o	e which of wate ut clea	n would er is co rly.	l crysta oled fro	llise om		
								Total Q	uestion 5
	Mass of pot	assium	nitrate				_g [4]		
								[Tur	n ove

(a) (!)		Nomethe	two ione process	in hudrochlaria		
(a) (I)) ľ	Name the	e two ions present	in nyorochioric ac	.ia.	
	_					_ [2]
(ii)) 1 e	These thi experime	ree acids are all s entally determine v	trong acids . Desc which of these acid	cribe how you wo Is is the stronges	ould st.
	_					
	_					_ [2]
(b) (i)	l e t s	In an exp each of th to a samp show the	periment to determ ne acids, a few dro ole of the acid solu results of these te Hydrochloric	ine which Group 7 ops of silver nitrate ution. Complete the ests. Hydrobromic	' ion was present e solution were a e table below to Hydroiodic	t in dded
(b) (i)	l e t	In an exp each of th to a samp show the	periment to determ ne acids, a few dro ole of the acid solu results of these te Hydrochloric acid	ine which Group 7 ops of silver nitrate ution. Complete the ests. Hydrobromic acid	ion was present solution were a table below to Hydroiodic acid	t in dded
(b) (i) Obser addit few o silve sol	rva tion dro er n luti	In an exp each of th to a samp show the tion on n of a ops of hitrate ion.	periment to determ ne acids, a few dro ole of the acid solu results of these te Hydrochloric acid	ine which Group 7 ops of silver nitrate ution. Complete the ests. Hydrobromic acid	' ion was present e solution were a e table below to Hydroiodic acid	t in dded
(b) (i) Obser addit few o silve sol	rva tion dro er n luti	In an exp each of th to a samp show the tion on n of a ops of nitrate ion.	periment to determ he acids, a few dro ole of the acid solu results of these te Hydrochloric acid	ine which Group 7 ops of silver nitrate ution. Complete the ests. Hydrobromic acid	' ion was present e solution were a e table below to Hydroiodic acid	t in dded [4]
(b) (i) Obser addif few o silve sol	rva tion dro er n lut	In an exp each of th to a samp show the tion on n of a ops of nitrate tion.	eriment to determ he acids, a few dro ole of the acid solu results of these te Hydrochloric acid	ine which Group 7 ops of silver nitrate ution. Complete the ests. Hydrobromic acid	ion was present solution were a table below to Hydroiodic acid	t in dded [4]
(b) (i) Obser addit few o silve sol	va tion dro r n luti	In an exp each of th to a samp show the tion on n of a ops of nitrate tion.	eriment to determ he acids, a few dro ole of the acid solu results of these te Hydrochloric acid	ine which Group 7 ops of silver nitrate ution. Complete the ests. Hydrobromic acid	ion was present solution were a table below to Hydroiodic acid	t in dded [4]

P

a Learning				
CCE Rewarding I				
2 Lasembry				
CE Rewarding I		(c)	Нус	drochloric a
			chlo	pride and z
Œ			con	itain both c
Ð				
Œ				
Rewarding I				
(A=				
Rewarding i				
Learning				
Aswarding I				
Learning				
Rewarding				
g Looming				
CCE Rewarding I				
200 Learning			(i)	Describe
CCE Anwarding I			(י)	sodium io
CCE				
Ð				
Œ				
D				
GE				
Rewarding				
(A=				
Researching I			(ii)	Describe
Leeming			. ,	mouthwas
Rowarding i				validity of
comming				
Rewarding				
Learning				
CCE Preventing I				
2 J Learning				
CCE Rewarding I				
20 J. Learning				
Œ				
Ð				
Œ				
D				
GE	70-5			
Remarking i	7950			
G=				
Rowarding I				
Lasming				
Rewarding i				
Learning				
Rewarding i				

;)	Hyd chlo con	rochloric acid reacts with bases to form salts such as sodium oride and zinc chloride. An antiseptic mouthwash is thought to tain both of these salts.		Examin Marks	er Only Remark
		Mouth Wash © iStockphoto / Thinkstock			
	(i)	Describe how you would confirm that the mouthwash contained sodium ions.			
	(ii)	Describe how you would experimentally confirm that the mouthwash contained zinc ions. In your answer, refer to the validity of your test.	[2]		
			[5]	Total Qu	estion 6

DO NOT WRITE ON THIS PAGE

For Exa use	miner's only
Question Number	Marks
1	
2	
3	
4	
5	
6	
QWC	
Total Marks	
	•

D

Examiner Number

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.

113039

www.StudentBounty.com