

General Certificate of Secondary Education 2013

Science: Chemistry

Unit C2

Foundation Tier

[GCH21]

THURSDAY 20 JUNE, AFTERNOON

GCH21

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.

You must answer the questions in the spaces provided. Do not write outside the box, around each page or on blank pages.

Complete in blue or black ink only. **Do not write with a gel pen**. Answer **all** questions.

INFORMATION FOR CANDIDATES

The total mark for this paper is 90.

Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.

Quality of written communication will be assessed in question **3(c)**.

A Data Leaflet, which includes a Periodic Table of the Elements, is included in this question paper.

1	Fire	worl	s contain the	three ingredients shown in	the box below.	Examiner Only Marks Remark
				colouring agent		
				fuel		
				oxidiser		
	(a)	Ма	gnesium is oft	en used in fireworks as the	colouring agent.	
		(i)	What is the coburns?	colour of the flame observed	when magnesium	
					[1]	
		(ii)		nced symbol equation for ma	[0]	
		(iii)	What is the p	percentage of oxygen in air?		
					[1]	
	(b)	Car	bon in the for	m of charcoal is often used	as the fuel in fireworks.	
		(i)	What is obse	rved when a sample of carb	oon burns?	
					[2]	
		(ii)	Name the proof oxygen.	oduct formed when carbon b	ourns in a limited supply	
					[1]	

Reserved:

Roserda Roserda De Learning

Research

To J. Learning

Research

To J. Learning

Roserds

Roserds

Learning

Reserved.

G.

Panerale Theoretic Reserving

Recognition 1 Loaning

Reason Do

Reserving
Reserving
Reserving

Research Total

Reservice Dispersion 1 Learning Reservice

Learning Reservice

20 7 Learning

Plearing

Plearing

Theoretics

Theoretics

Theoretics

Theoretics

De lecardos Paraserdos Paraserdos

20

Rivertite

| Coloration | Color

(c)		disers provide the oxygen needed to allow fireworks to burn ectively. A common oxidiser is potassium nitrate.		Examin Marks	er Only Remark
	Wri	te the formula for potassium nitrate.			
			[1]		
(d)	and	arklers are hand held fireworks which contain a fuel, an oxidiser I iron powder. Often the iron powder is mixed with linseed oil to vent it rusting.			
	(i)	What conditions are required for iron to rust?			
			[2]		
	(ii)	Explain why rusting is an oxidation reaction.			
			[2]		
	(iii)	State one observation you would make which would indicate th rusting is a chemical reaction.	at		
			[1]		
				[lur	n ove

Talentry

Talent

(e) In industry, iron is manufactured in the Blast Furnace. Two of the reactions which occur in the Blast Furnace are shown in the table below. Choose a word or phrase from the box which is most suitable to describe each type of reaction.

thermal decomposition

neutralisation

redox	displacement
combu	stion

Reaction in the Blast Furnace	Type of Reaction
$\text{Fe}_2\text{O}_3 + 3\text{CO} \rightarrow 2\text{Fe} + 3\text{CO}_2$	
$CaCO_3 \rightarrow CaO + CO_2$	

[2]

Research

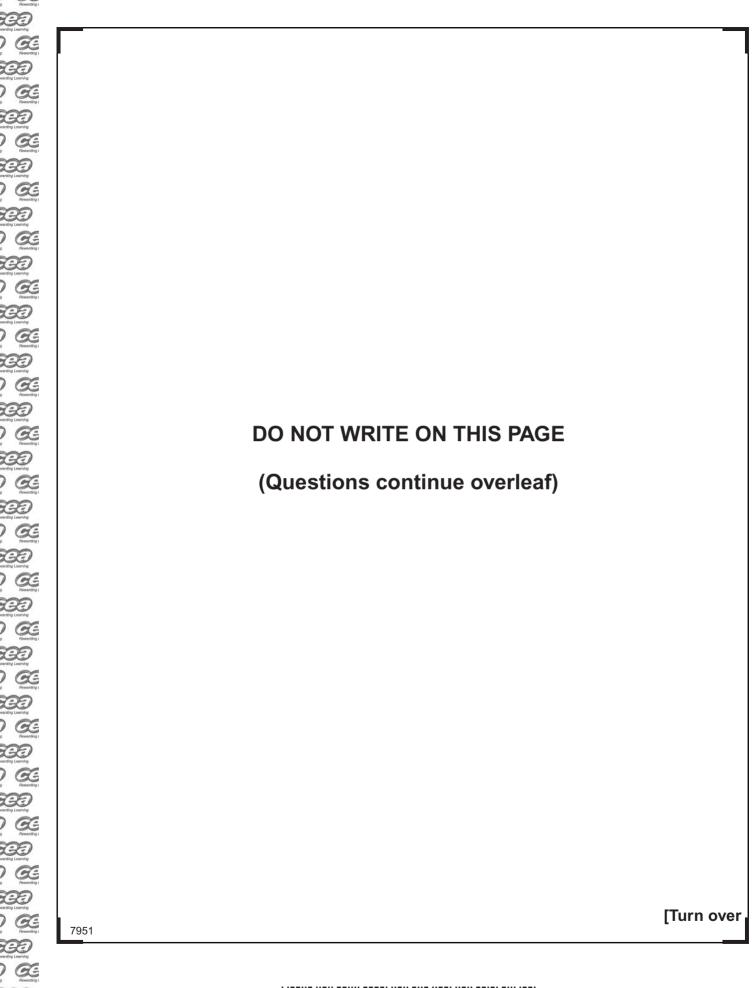
20

2 Learning

Research

20

20 y Learning


De

Examiner Only

Marks Remark

Total Qu	estion 1
	Total Qu

COO GE American

GGG warding Learning GG Remarking **3**

COO Marding Learning

COD Marding Learning GE REMARKING **Q**

3

COD GE Annuarding COD Northing Learning

D

O

GG Rewarding COD Marring Learning GE Remarking **9** GG Remarking

POD Marding Learning

GG Romanding

E

) GE 3 GE Romanding 33

2	(a)	The rate of decomposition of hydrogen peroxide using a catalyst of be measured using the apparatus shown below.	an	Examine Marks	r Only Remark
		hydrogen peroxide solution and manganese(IV) oxide			
		© CCEA			
		(i) Name the pieces of apparatus labelled A and B.			
		A B	[2]		
		(ii) Name the catalyst used in the decomposition of hydrogen peroxide.	_ [∸]		
			_ [1]		
		(iii) What is meant by the term catalyst?			
			[3]		
		(iv) Write a balanced symbol equation for the decomposition of hydrogen peroxide.	_		
			_ [3]		
7951					

Reserved:

Participation of the control of the cont

Roserds

Roserds

Learning

Reserved.

G.

Paracratic

Learning

Reserving

Recognition 1 Loaning

Research

Reserving
Reserving
Reserving

Research Total

Reservice Page 1 Learning T Learning

Learning Reservice

20 7 Learning

Plearing

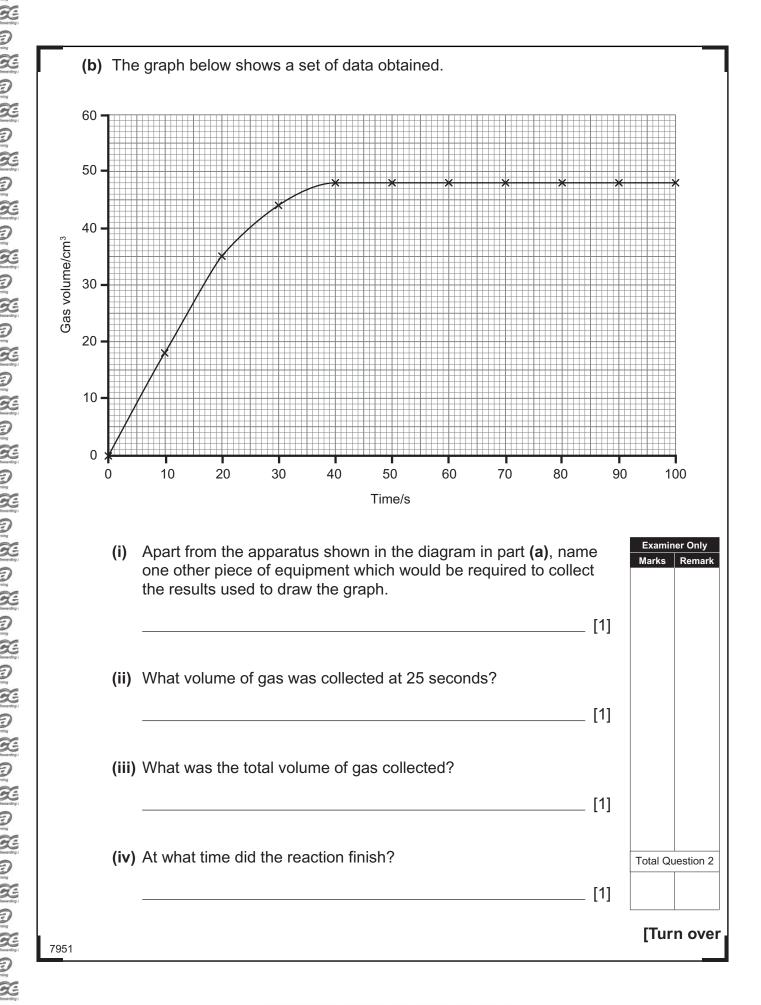
Plearing

Theoretics

Theoretics

Theoretics

Theoretics


De lecardos Paraserdos Paraserdos

20

Rivertite

| Coloration | Color

3	Perfume is a mixture of essential oils dissolved in a solvent. One of the
	essential oils used in making perfume is called myrcene.

Examiner Only			
Marks	Remark		

D 1 Loaning

Research

© iStockphoto / Thinkstock

(a) The structural formula of a molecule of myrcene is shown below.

(i) Explain why a molecule of myrcene can be classified as a hydrocarbon.

_____[1]

(ii) Identify the functional group present in myrcene.

______[1]

(iii)	Like all hydrocarbons, myrcene (C ₁₀ H ₁₆) undergoes combustion.
	Complete the balanced symbol equation for the complete
	combustion of myrcene.

$C_{10}H_{16} +$	$O_2 \longrightarrow$	[2]

(iv) Calculate the relative molecular mass (RMM) of myrcene ($C_{10}H_{16}$).

_____[1]

(v) Calculate the percentage of carbon present in myrcene $(C_{10}H_{16})$.

_____% [2]

(b) Ethene can be used to manufacture the solvent used in perfumes. Complete the table below to give information about ethene.

Ethene	Name	Molecular formula	Structural formula	State at room temperature and pressure
	Ethene			

[Turn over

Examiner Only

Marks Remark

7951

Reading 1

Committee of the committee of

(c)	Ethene can also be used to make polymers. Polymers may be disposed of by landfill and incineration.	Examine Marks	er Only Remark
	Explain what you understand by the term polymer and state the advantages and disadvantages associated with each method of disposal.		
	In this question, you will be assessed on using your written communication skills including the use of specialist scientific terms.		
		Total Qu	estion 3
	[6]	, otal Qu	
7951			

Research

Research

Research

Research

Research

Research

Research

Research

Research

Rewards

Research

Learning

Research

Research

Learning

Roserving

Learning

Remarks

G.

Powerds

J. Seming

Reserving

J. Loarning

Reasoning 1 Learning

Research

Dip

[Learning

Color

Research

Dip

[Learning

Color

Research

Dip

[Learning

Remarks

Research Page 1 1 Learning Research

Powerding Research

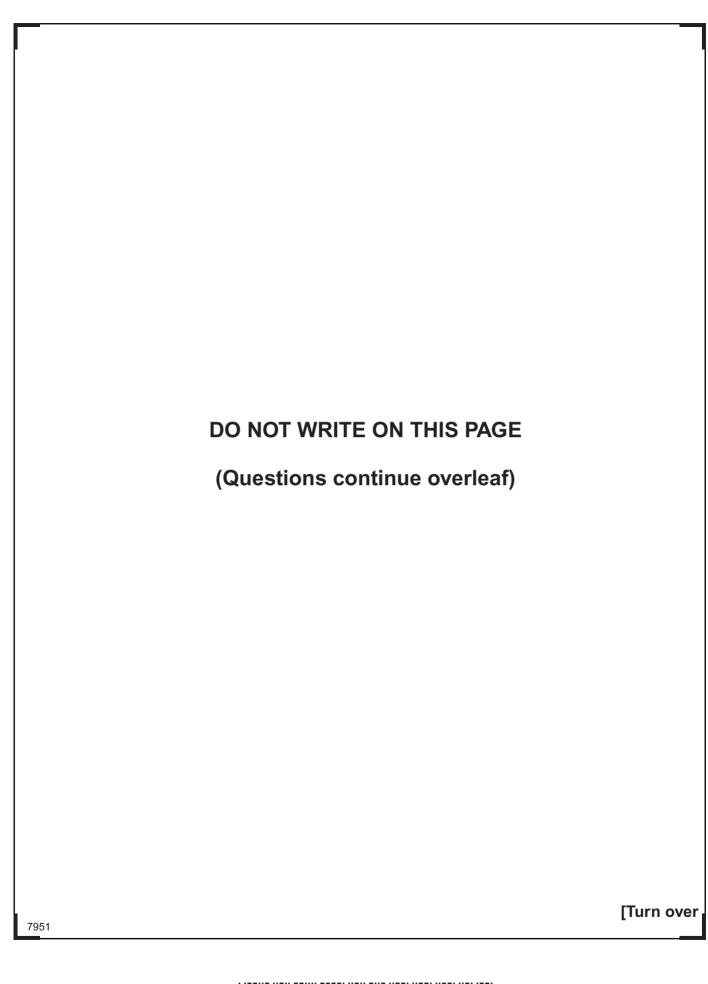
20 7 Learning

Powerting 7 Learning

Thearing

Reserving

Learning


Reserving

Downerding Learning

20 7 Levarring

Rivarding

Marsting Laurang

Particular of the control of the con

Rewarding I

) Œ

ACTION LEAVING LEAVING

Parametry |
Parame

Rewarding I

GG Romanding

E

Rewarding J American Learning American Learning American Learning American Learning American Learning

(a) Aluminium is obtained from purified bauxite by electrolysis.			ained from purified here	rito by alastralysis	
(a)	Alui	minium is obta	amed from purmed baux	tite by electrolysis.	
	(i)	What is mean	nt by the term electrolys	sis?	
					_ [2]
	(ii)	Bauxite conta oxide.	ains aluminium oxide. V	Vrite the formula for alumin	nium
		_			_ [1]
	(iii)		ectrolysis of purified bar ne electrodes. Completo	uxite the ions present are e the table below.	
	Nan	ne of ion	Formula of ion (including charge)	Name of electrode to which ion is attracted	
	alu	ıminium			
	alu	ıminium	O ²⁻		
	alu	ıminium	O ²⁻		[4]
			the carbon anodes need	d to be replaced periodica	
		Explain why	the carbon anodes need	d to be replaced periodica	
		Explain why	the carbon anodes need	d to be replaced periodica	
		Explain why	the carbon anodes need	d to be replaced periodica	
		Explain why	the carbon anodes need	d to be replaced periodica	lly

Do p Learning

Research

Research Description of the second of the se

Powerfor

Powerf

Rowards

Remarks
Remarks
Remarks

Remarks

Remarks

Paraming

Learning

Theoreting

Researching

Learning

Learning

Researching

Learning

Company

Learning

Company

Learning

Company

Learning

Company

Research

Research

Research

20 Learning

Romando Florando

G.

Pewardin y Learning Rewardin

Downerding Learning

20 7 Levarring

Rewards

(b)	Aluminium cans are the world's most recycled packaging container. Over 50% of aluminium cans are recycled worldwide.	Examin Marks	er Only Remark
	© iStockphoto / Thinkstock		
	State two reasons why it is important to recycle aluminium.		
	1		
	2		
	[2]		
		Total Qu	estion 4

To Render I To Ren

7951

[Turn over

		als may be placed in a reactivity series by observing their reactions air, water, steam and dilute acid.	Examine Marks	r Only Remark
		Describe what would be observed when a piece of calcium metal is heated in air.		
		[2]		
	(b)	The apparatus below may be used to react zinc metal with steam.		
dam miner		zinc gas produced		
woo		zinc gas produced		
HI	EAT	HEAT trough		
		water beehive shelf		
		© Barking Dog Art		
		(i) What labels should be placed at A and B on the diagram?		
		A		
		B [2]		
		(ii) Explain why the damp mineral wool is heated.		
		[1]		
		(iii) Name the gas produced in this experiment.		
		[1]		
7951				ĺ

Donarding Co.

20 7 Learning Rowardin

Remarks

20
2 Learning

Remarks

Paraming
Paraming
Paraming
Paraming
Research

20 7 Learning

Roserving

Learning

Remarks

G.

Rowards

The Rowards

Rowards

Rowards

Rowards

Reasoning 1 Learning

Reserved To Learning

Rosertin

Rowarding Rowarding

Rewarding

Justining

Granding

Justining

Rewards

G.

Powerding

J. Learning

Resourcin

20 Learning

Powerting 7 Learning

Rewards

A Control

Rewards

A Control

Rewards

Downerding Learning

20

Rewards

(iv)	Name a metal which	does not react when he	eated with steam [1]	Examiner Only Marks Remark
` '		he table below gives deals X, sodium and zinc		
Metal	Reaction when heated in oxygen	Reaction with cold water	Reaction with dilute hydrochloric acid	
Х	Black coating forms on metal without burning	No reaction	No reaction	
Sodium	Burns very vigorously with a yellow flame		Dangerous reaction not carried out in school laboratory	
Zinc	Burns forming a yellow solid which changes to white on cooling	No reaction	Reacts steadily	
(i)	Suggest the name of	metal X.	[1]	
(ii)	Describe what you we water.	ould observe when soc	lium reacts with cold	
			[3]	
(iii)	Write a balanced symwater.	nbol equation for the re	action of sodium with	Total Question 5
7951				[Turn ove

To tembra | Commander | Comman

6	(a)	Fill in the blanks in the following sentences about water.	
		Water is a colourless liquid at room temperature and	
		pressure and has a melting point of 0 °C and a boiling point	
		of°C.	
		One test for water is to use cobalt(II) chloride paper which changes	
		colour from to	
		if water is present.	[3]

Remarking Learning R

20 0

Parties of Researchy Learn Research Res

20 0

CO.

XD (

CO.

20 0

CO.

20 0

G9

20 0

CO Rowarding Learn

Reserving R

Jeowing R

Reserving R

Reserving Learn

Reserving Learn

Part of the control o

CONTROL CONTRO

Researching Learning

Participation

Participation

Researching Learning

Researching

Examiner Only

Marks Remark

(b) An investigation was carried out to compare the hardness of water samples from three towns A, B and C.

25 cm³ of each water sample were placed into three separate conical flasks and labelled A, B and C. A sample of deionised water was also tested.

Soap solution was added 1 cm³ at a time to each conical flask with shaking until a lasting lather formed. The total volume of soap solution added to each flask was recorded.

The experiment was repeated with fresh samples of A, B and C which had been boiled and allowed to cool, before adding the soap solution.

The results are shown in the table below.

Water sample	Volume of soap solution required to form a lather		
·	before boiling (cm³)	after boiling (cm³)	
Deionised water	2	2	
A	6	6	
В	8	2	
С	11	7	

	(i)	Name a piece of apparatus which could be used to measure the 25 cm³ samples of water.	he	Examiner Marks F	Only Remark
			_ [1]		
	(ii)	Which of the three water samples (A, B or C) is the hardest water?	[1]		
	/ ****		_ [']		
	(iii)	Which of the three water samples (A, B or C) contains only temporary hardness?			
			_ [1]		
	(iv)	Which of the three water samples (A, B or C) contains both temporary and permanent hardness?			
			_ [1]		
(c)		te two disadvantages of hard water.			
	2				
			_ [2]		
				Total Que	stion 6
				[Turn	Over
7951					0461

To learning to the control of the co

	(i) Complete the table below on itrogen.	giving some physical properties of		
		Nitrogen		
	State at room temperature and pressure			
	Colour			
	Odour			
		I	[3]	
	(ii) State one other use of nitro	ogen.		
(b)		out a chemical test for the presence or vations you would make for a positive		
(b)	ammonia gas, stating the obse	out a chemical test for the presence o	of	
(b)	ammonia gas, stating the obse	out a chemical test for the presence or ervations you would make for a positive	of	
(b)	ammonia gas, stating the obse	out a chemical test for the presence or ervations you would make for a positive	of e ———————————————————————————————————	

De Lecentral

Pennyrthe Department Learning Rosserthe

Learning
Reserving
Reserving
Learning
Reserving
Reserving

Resourch

Page 1 Learning Page 1 Learnin

Reservice

Reservice

Reservice

Reservice

Reservice

Recognition

(Called Services)

(Called Services)

(Learning)

Paraming 1 Learning 1

Theoreting

Reserving

Learning

Reserving

Reserving

Parting
Partin

Daning Learning Research

20 7 Learning

Pleaning
Flowering
7 Learning

Research

Research

Research

Research

Research

20

Rewards

	(c)		rogenous fertilisers contain ammonium compounds such as monium nitrate which is produced when ammonia reacts with nitric d.	Examine Marks	er Only Remark
		(i)	Write a balanced symbol equation for the reaction of ammonia with nitric acid.		
			[2]		
		(ii)	State one disadvantage of using nitrogenous fertilisers. [1]		
	_	ТНІ	S IS THE END OF THE QUESTION PAPER		
				Total Que	estion 7
7951	1				

To carrier

To car

DO NOT WRITE ON THIS PAGE

For Exa	
Question Number	Marks
1	
2	
3	
4	
5	
6	
7	
QWC	

D 1 Loaning

Total Marks

Examiner Number

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.

