

(Centr	e Nu	mber
Can	didat	e Nu	mber
Can	didat	e Nu	mber

General Certificate of Secondary Education 2016

GCSE Chemistry

Unit 2

Foundation Tier

GCH21

[GCH21]

WEDNESDAY 22 JUNE, MORNING

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.

You must answer the questions in the spaces provided.

Do not write outside the boxed area on each page or on blank pages.

Complete in blue or black ink only. Do not write with a gel pen.

Answer all six questions.

INFORMATION FOR CANDIDATES

The total mark for this paper is 90.

Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.

Quality of written communication will be assessed in Question 4(b).

A Data Leaflet, which includes a Periodic Table of the Elements, is included in this question paper.

Description of the control of the co

Rewards

Pag Learning

Rewards

Rewards

)

G:

) 0 93) 0 DED TO LEASTING G.) G.) 0 93) 0) G:) 0 DED TO LEASTING G. **20**

Reserved on State of State of

g Learning

Reversing

12 September 1 Sept

0

1 (a) The first national report examining the impact of water fluoridation on children was published in 2014. The dental health of five year olds and twelve year olds living in fluoridated water and non-fluoridated water areas was measured.

Data from this report is shown in the table below.

	In fluoridated water areas	In non-fluoridated water areas
% of twelve year olds with tooth decay	22	37
% of five year olds with tooth decay	13	42
% of hospital admissions for children aged 1–4 for tooth decay	2	20

(i)	Use the data in the table to deduce the effect, if any, of the presence of fluoride in water on the dental health of children.
	[2]
(ii)	State one reason why some people are against the fluoridation of drinking water.
	[1]

[Turn over

(b) Four samples of water, A, B, C and D, were tested for hardness. Soap solution was added, with shaking, to each of the four 20.0 cm³ samples of water. The volume of soap solution required to produce 1 cm height of lather was recorded. The experiment was repeated, with fresh boiled samples of water and then again with fresh samples of water which had been treated with washing soda. The results of the experiment are shown below. 20 Volume of soap solution/cm³ 15 10 5 0 -Α В C D Water sample untreated water boiled water water with washing soda added What is meant by the term hard water? _ [1] (ii) Which one of the samples, A, B, C or D is the hardest water? Explain your answer. Sample: _____

ÐE)

)

ÐÐ)

)

)

_ [2]

(iii) What type of hardness is present in the following samples?	
Sample B	
Sample D	[2]
(iv) Explain why hard water is considered to be good for your health.	
	[1]
Water can exist in three different states of matter.	

- (c)
 - The changes of state are represented by the letters A, B, C and D, in the diagram below.

Complete the table below giving the name of the change of state represented by each letter.

Change of state	Name of the change of state
A	
В	
С	
D	

(ii) Name a chemical which could be used to test for the presence of water.

_ [1]

[Turn over

[4]

9999

Reserving 1

Parties of the control of the control

(a) Wh	at is meant by the term homologous series?	
			[3]
(b) Сус	clohexane is a colourless liquid alkane.	
	(i)	What is the general formula for the alkanes?	
			[1]
	(ii)	Draw the structural formula of ethane.	
			F41
			[1]

Towards

Revised of State of S

Research

Research

Research

Research

Constant Con

Rewards

Rewards

Rewards

Rewards

Research

Page
12 Learning

Page 14 Learning

Page 14 Learning

Page 15 Learning

Carlo

Rowards

Rowards

Rowards

Rowards

Rowards

Rowards

Rowards

Rowards

Rowards

No Learning

O:

(c) The colourless liquid cyclohexene is a hydrocarbon with the molecular formula C_6H_{10} . The structural formula of cyclohexene is shown below.

(i) What is the functional group in cyclohexene?

______[1]

(ii) Why is cyclohexene described as a hydrocarbon?

[1]

(iii) Name the two products formed when cyclohexene is burned in excess oxygen.

1.

2. ______ [2

(iv) Name the two **compounds** formed when cyclohexene is burned in a limited supply of oxygen.

1._____

[Turn over

(d)	Etha	anol is a colourless liquid which can be made by fermentation.	
	(i)	Describe the process of fermentation.	
			[/]
			[+]
	(ii)	State one use of ethanol.	
			[1]
(e)	Etha	anoic acid is a colourless liquid with a sharp smell.	
	(i)	State one use of ethanoic acid.	
			[1]
	(ii)	Complete the word equation below.	
ethanoi		d + sodium carbonate →	[1]
9999			

Reserved of States of Stat

Roserdon

Para

Para

Research

Deligo Learning

Towards

Towards

Towards

Towards

Towards

Towards

Towards

Towards

Research Spanish

Constitution of the consti

Carlo

Remode,

Rewarding

13 Learning

Rewardin

Towarding
To Learning
Revending

DE Learning

Remardin

Selection of the selection of the

}	Hydro catal		en peroxide decomposes rapidly into water and oxygen in the presence o	of a
	(a) (i)	Write a balanced symbol equation for the decomposition of hydrogen peroxide.	
				_ [3]
	(ii)	Name the catalyst used for this reaction in the laboratory.	_ [1]
	(iii)	What is meant by the term catalyst?	
				_ [3]

Œ

Reserving I.

Compared to the compared to the

GG Rewarding L

Reserving Learning

Reserving Learning

Reserving Learning

Learning

Reserving Learning

Reserving Learning

Paga a Lawring

Reserving

Lawring

Reserving

Reserving

Lawring

Lawring

Lawring

Rowarding L

Reserving L

Rewarding L Rewarding L D Learning

9999

[Turn over

(b) The volume of gas produced by the catalytic decomposition of hydrogen peroxide was measured at four different temperatures. The results were plotted on the graph below.

(i)	What was the gas volume at 40 seconds when the temperature was 30°C?
	State the units.

_____ [2]

(ii) Complete the table below giving the time taken for the reaction to finish at 60 °C. Calculate the rate based on this time.

Temperature (°C)	Time taken for reaction to finish (s)	Rate = $\frac{1}{\text{time}}$ (s ⁻¹)
30	108	0.00926
40	79	0.01266
50	48	0.02083
60		

[2]

(iii) Using the data from the table above, state how rate changes as temperature increases.

____ [1]

[Turn over

9999

Reserving 1

Parties of the control of the control

4	(a)	The	e element carbon is found in all living things.
		(i)	Write a balanced symbol equation for carbon burning in air to form carbon dioxide gas.
			[2]
		(ii)	Describe a chemical test for carbon dioxide gas and state the result for a positive test.
			[3]
	(b)	in fo	d rain has been a major environmental problem for decades. Sulfur impurities ossil fuels contribute to acid rain. Scribe in detail how these sulfur impurities lead to the formation of acid rain. Scribe the effects of acid rain and methods used to prevent it.
		You	r answer should include:
		•	A description of how sulfur impurities lead to acid rain. (Include balanced symbol equations)
		•	At least two detrimental effects of acid rain on the environment At least two methods used to prevent acid rain.
			his question you will be assessed on your written communication skills luding the use of specialist scientific terms.
9999			

Towards

Rewards

Part Learning

Rewarded

Page Learning

To a learning

Research

Page
12 Learning

Page 14 Learning

Page 14 Learning

Page 15 Learning

Carlo

Rowards

Rowards

Rowards

Rowards

Rowards

Rowards

Rowards

Rowards

Rowards

As Learning

Research

Sa Learning

Research

Sa Learning

O:

[Turn over		
[Turn over		
[Turn over		
[Turn over		
[Turn over		[0]
[Turn over		[v]
[Turn over		
[Turn over		
9999		
[Turn over		
9999 [Turn over		
9999 [Turn over		
9999		[Turn over
	9999	

Reserving L.

Reserving

Learning

Learning

Reserving

Learning

Learning

Rewarding L

Rewarding L

Reserving L.

Reserving
L. Laureng

Rewarding L

Rewarding L

Rewirding L Description

Rewarding L

Remarding L.

Company

Company

Company

Remarding L.

Company

Co

Rewarding L

Rewarding L

Rowarding L

Rewarding L

Rewarding L

GG Rewinding L

) PD

5	Chemical	reactions	involve	reactants	beina	converted	into	products.
•	Officialion	reactions	11110110	reactants	Dening	CONVENICA	11110	products.

	_	_										
1-1	Camaaai	~~~ af a	اممنصماما	wa a ati a m			~i\	: 1	۱6 -	h - 1/	h ~ I	
ıa	. Some 90	ากรากส	cnemicai	reachon	accumina	are	$\alpha \omega \omega \alpha$	III I	IN P	INIX	$r \mapsto r$	()\//
14	Some sign	9113 OI G	Onchiloai	1 Cacaca	Cocurring	aic	giveii			DUA		O V V

colour change gas produced formation of a precipitate

For each of the chemical reactions in the table below, choose a sign from the box above which would indicate that a chemical reaction is occurring.

Chemical reaction	Sign
magnesium + hydrochloric acid	
copper(II) oxide + hydrochloric acid	

[2]

- (b) Chemical reactions may be classified as exothermic or endothermic reactions.
 - (i) Explain the meaning of the term endothermic.

______[1]

(ii) Complete the following table by placing a tick (\checkmark) in the appropriate column.

Chemical Reaction	Exothermic	Endothermic
Neutralisation		
Thermal decomposition		

[2]

	(iii)	Fill in the missing words to complete the passage below.	
		During a chemical reaction, bonds in the reactants are broken and this	
		process energy. New bonds are formed in the	те
		products and this process energy.	[2]
(c)	Rus	sting of iron is a major problem costing millions of pounds every year.	
	(i)	Name the two substances that react with iron to form rust.	
		1	
		2	[2]
	(ii)	Describe the appearance of rust.	
			[2]
	(iii)	State a method used to prevent iron from rusting and explain how it work Method	
		Explanation	
			[2]

[Turn over

9999

Œ

Reserving L

GG Rewarding L

Reserving Learning

Reserving Learning

Reserving Learning

Learning

Reserving Learning

Reserving Learning

Paga a Lawring

Reserving

Lawring

Reserving

Reserving

Lawring

Lawring

Lawring

Rowarding L

Reserving L

Rewing L Rewinding L D Learning

Reserving 1

Company 1

Reserving 1

Company 1

Reserving 1

Company 1

Reserving 1

(d)	iron	is extracted from its ore, haematite, in a Blast Furnace. Haematite is main (III) oxide which is reduced by carbon monoxide to produce iron and carbodide.	inly on
	(i)	Write a balanced symbol equation for the reaction between iron(III) oxide and carbon monoxide.	
	(ii)	Explain why iron(III) oxide is said to be reduced in this reaction.	_ [3
			_ [2

Towards

Research

Party Learning

To Learning

Carlos Revisions

Rewinder

Research Common Common

Remercial
Remercial
Remercial
Remercial
Remercial
Remercial

Rowards

Rowards

Rowards

Rowards

Page Learning
Rewarding
In Learning

Œ.

6 (a) The reactivity of metals can be studied using displacement reactions. If a displacement reaction occurs there is a temperature rise.

In an experiment the following method was used:

 Pour some copper(II) sulfate solution into a polystyrene cup and record the temperature of the solution.)

DE)

)

)

0

)

0

)

)

Da in Learning Ca Revised in Da

)

)

)

)

ÐÐ)

De se l'escring

Constitution

Rossippor

)

0

0

)

0

- Add a known mass of metal and stir.
- Record the maximum temperature of the mixture.
- Repeat the experiment.

The results of this experiment are shown in the table below.

Metal	Temperature	Average	
Wietai	Experiment 1 Experiment 2		temperature rise (°C)
magnesium	11.5	16.5	14.0
silver	0.0	0.0	0.0
iron	3.0	4.0	3.5
gold	0.0	0.0	0.0
zinc	7.0	8.0	7.5

	it a fair test.	
	1	
	2	[2]
(ii)	State and explain which of the metals gave the least reliable temperature rise.	
		[1]

(i) State two factors which should be kept the same in this experiment to make

	reactive.	[
iv)	Explain why there is no temperature rise when silver is added to copper(II sulfate solution.	I)
		[
v)	Why do the results make it impossible to decide which of the metals is the least reactive?	-
v)	·	-
	·	- Э [

[Turn over

9999

Œ

Reserving L

GG Rewarding L

Reserving Learning

Reserving Learning

Reserving Learning

Learning

Reserving Learning

Reserving Learning

Paga a Lawring

Reserving

Lawring

Reserving

Reserving

Lawring

Lawring

Lawring

Rowarding L

Reserving L

Rewarding L Rewarding L D Learning

Reserving 1

Company 1

Reserving 1

Company 1

Reserving 1

Company 1

Reserving 1

(b)	Aluı	minium is extracted from its ore by electrolysis.	
	(i)	Explain what is meant by the term electrolysis.	
	(ii)	Name the ore from which aluminium is extracted.	
			[1]
	(iii)	The ore of aluminium contains aluminium ions and oxide ions. State the formulae of these ions.	
		aluminium ion	
		oxide ion	[2]

Description of the control of the co

Rowards

Party Learning

The Learning

Rewords

Party Learning

g Learning

Good Research

Good Research

Good Research

Good Research

Good Research

Forward

Good Research

Forward

Rowards PD vg Learning

g Learning

Reversing

12 September 1 Sept

0

THIS IS THE END OF THE QUESTION PAPER

Description of the control of the co

Rewarder

Deligation of the second of the se

)

Towards

Reserving

Reserving

Reserving

Reserving

Reserving

Reserving

Rowards
Page Learning
Office

Da Learning
Research

Reserving 1

Company 1 Learning

Company 1 Lea

DO NOT WRITE ON THIS PAGE

For Examiner's use only					
Question Number	Marks				
1					
2					
3					
4					
5					
6					

93)

DE STATE OF THE ST

DE) 19 Learning GC

)

)

)

OS Remirida DD

)

Day of Learning

Da ig Learning GC

ÐÐ)

)

)

)

0

Ð

0

0

Total Marks

Examiner Number

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.

SYMBOLS OF SELECTED IONS

Positive ions

Name	Symbol
Ammonium	NH ₄
Chromium(III)	Cr ³⁺
Copper(II)	Cu ²⁺
Iron(II)	Fe ²⁺
Iron(III)	Fe ³⁺
Lead(II)	Pb ²⁺
Silver	Ag ⁺
Zinc	Zn ²⁺

Negative ions

Name	Symbol				
Carbonate	CO ₃ ²⁻				
Dichromate	Cr ₂ O ₇ ²⁻				
Ethanoate	CH₃COO¯				
Hydrogen carbonate	HCO ₃				
Hydroxide	OH ⁻				
Methanoate	HCOO ⁻				
Nitrate	NO ₃				
Sulfate	SO ₄ ²⁻				
Sulfite	SO ₃ ²⁻				

SOLUBILITY IN COLD WATER OF COMMON SALTS, HYDROXIDES AND OXIDES

Soluble
All sodium, potassium and ammonium salts
All nitrates
Most chlorides, bromides and iodides EXCEPT silver and lead chlorides, bromides and iodides
Most sulfates EXCEPT lead and barium sulfates

Insoluble

Most carbonates

EXCEPT

sodium, potassium and ammonium carbonates

Calcium sulfate is slightly soluble

Most hydroxides

EXCEPT

sodium, potassium and ammonium hydroxides

Most oxides

EXCEPT

sodium, potassium and calcium oxides which react with water

COUNCIL FOR THE CURRICULUM EXAMINATIONS AND ASSESSMENT 29 Clarendon Road, Clarendon Dock, Belfast BT1 3BG

DATA LEAFLET

For the use of candidates taking Science: Chemistry,

Science: Double Award

or Science: Single Award

Copies must be free from notes or additions of any kind. No other type of data booklet or information sheet is authorised for use in the examinations.

Contents	Page
Periodic Table of the Elements	2–3
Symbols of Selected Ions	4
Solubility of Common Salts	4

gcse science

chemistry double award single award

Rewarding Learning

THE PERIODIC TABLE OF ELEMENTS Group

4	N
- (U

1		
	H	
Ну	/drogen	

1	2						Hydrogen 1					3	4	5	6	7	Helium 2
7 Lithium 3	9 Be Beryllium											Boron 5	Carbon	14 N Nitrogen 7	16 Oxygen 8	19 F Fluorine 9	Neon 10
Na Sodium	Mg Magnesium 12											Aluminium 13	28 Si Silicon 14	Phosphorus	32 Sulfur 16	35.5 Chlorine 17	40 Ar Argon 18
39	40	45	48	51	52	55	56	59	59	64	65	70	73	75	79	80	84
Potassium 19	Calcium 20	Sc Scandium 21	Ti Titanium 22	Vanadium 23	Cr Chromium 24	Mn Manganese 25	Fe Iron 26	Cobalt 27	Nickel 28	Cu Copper 29	Zn zinc 30	Gallium 31	Germanium 32	As Arsenic 33	Se Selenium 34	Bromine 35	Krypton 36
Rb Rubidium 37	Strontium 38	Yttrium 39	91 Zr Zirconium 40	93 Nb Niobium 41	96 Mo Molybdenum 42	99 TC Technetium 43		Rhodium 45	106 Pd Palladium 46	108 Ag Silver 47	112 Cd Cadmium 48	115 In Indium 49	119 Sn 50	Sb Antimony 51	Tellurium 52	127 lodine 53	131 Xe Xenon 54
133 CS Caesium	Barium	139 La*	178 Hf	181 Ta	184 W Tungsten	186 Re	190 Os Osmium	192 Ir Iridium	195 Pt Platinum	197 Au Gold	Hg Mercury	204 TI Thallium	Pb	Bi Bismuth	Polonium	210 At Astatine	Radon
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
223	226	227	261	262	263	262	265	266	269	272	285						

* 58 – 71 Lanthanum series † 90 – 103 Actinium series

Ra

Radium

Fr

Francium

a = relative atomic mass b X (approx)

89

 Ac^{\dagger}

Actinium Rutherfordium

104

Db Dubnium

Sg Seaborgium 106

Bh

Bohrium

107

Hs

Hassium

108

109

x = atomic symbol

b = atomic number

	140	141	144	147	150	152	157	159	162	165	167	169	173	175
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dv	Но	Er	Tm	Yb	Lu
	Cerium 58	Praseodymium 59	Neodymium			Europium	Gadolinium	Terbium 65	Dysprosium 66	Holmium	Erbium 68	Thulium 69	Ytterbium 70	Lutetium 71
3	232	231	238	237	242	243	247	245	251	254	253	256	254	257
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	Thorium 90	Protactinium		Neptunium 93		Americium 95	Curium 96	Berkelium 97	Californium 98	Einsteinium 99	Fermium 100	Mendelevium 101		Lawrencium 103

Mt Ds Rg Cn
Meitnerium Darmstadtium Roentgenium Copernicium