

Centre Number			
71			
Cano	didate Number		

General Certificate of Secondary Education 2013–2014

Double Award Science: Chemistry

Unit C1

Foundation Tier

[GSD21]

TUESDAY 25 FEBRUARY 2014, MORNING

TIME

1 hour.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.

Write your answers in the spaces provided in this question paper. Answer **all nine** questions.

INFORMATION FOR CANDIDATES

The total mark for this paper is 70.

Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question. Quality of written communication will be assessed in Question **9(b)**. A Data Leaflet which includes a Periodic Table of the elements is provided.

For Examiner's use only		
Question Number	Marks	
1		
2		
3		
4		
5		
6		
7		
8		
9		

Total	
Marks	

1	Some containers of chemicals have labels, called hazard symbols, to warn
	of risks or dangers.

Examiner Only

Marks Remark

(a) For **each** of the hazard symbols below **draw a line** from the symbol to the correct risk or danger.

Hazard Symbol

Could poison you

Could cause skin burns

Could cause an explosion

Could cause a fire

Could cause irritation

© Crown Copyright

[4]

The instructions were:

Put 15 cm³ of the chemical into a boiling tube and heat it until it boils. Record the boiling point of the chemical which will be less than 100 °C.

The diagrams below show two different methods of carrying out this experiment.

© Martyn F Chillmaid / Science Photo Library

© Martyn F Chillmaid / Science Photo Library

Method 1

Method 2

The student used Method 2 . Explain why Method 2 is safer than Method 1 .				
				[2]

2 The diagram below shows apparatus used in the laboratory to separate two liquids.

Examiner Only			
Marks Remark			

[1]

© Jerry Mason / Science Photo Library

Choose words from the list below to complete the sentences which follow.

	miscible	colourless	beaker	
	immiscible	filter funnel	cooking oil	
	separating funnel	orange juice		
(a)	The liquids shown are describe	d as	.	[1]
(b)	The liquid in the bottom layer is	water. The liquid in the	upper	
	layer could be	·		[1]
(c)	The liquid can be run out into a		.	[1]

(d) The apparatus shown is called a ______.

BLANK PAGE

(Questions continue overleaf)

3 The table below gives information about some gases in the air.

gas	formula	% by volume in air	boiling point/°C
argon	Ar	0.93	−185
oxygen	O ₂	21.0	-183
carbon dioxide	CO ₂	0.03	-78
nitrogen	N ₂	78.0	-196
neon	Ne	0.005	-246

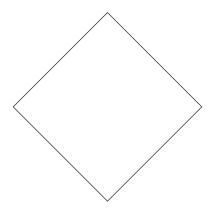
Examiner Only

(a)	Use this	information	to answer	the questions	that follow.
-----	----------	-------------	-----------	---------------	--------------

(i)	Which gas in the table is a compound?	
		[1]
(ii)	Which noble gas, in the table, is the most abundant in the air?	L4.
		[1]
(iii)	Which two gases, in the table, are diatomic?	
	and	[1]
(iv)	Which gas, in the table, has the highest boiling point?	

_____[1]

(b) Complete the table below which gives information about some of the Group 7 elements, called the halogens.

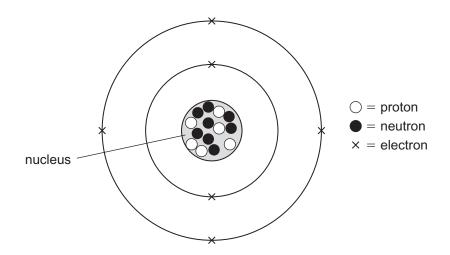

Examiner Only			
Marks Remark			

element	state at room temperature	colour	formula
chlorine			Cl ₂
	liquid	red-brown	
iodine		grey	l ₂

[5]

(c) All containers of halogens have a hazard symbol.

In the space below draw the hazard symbol used on containers of halogens.



[1]

4	(a)		e list below giv micals.	es the nar	mes of some cor	mmon lal	boratory	Examiner Only Marks Remark
		etha	anoic acid	sodiu	m hydroxide	hyd	rochloric acid	
	amı	mon	ia sulfuri	c acid	sodium chlori	de p	otassium sulfa	ite
		Cho	oose, from the	list, a che	emical which is a	:		
		(i)	strong acid _					[1]
		(ii)	weak alkali _					[1]
		(iii)	weak acid					[1]
	(b)	Cor	mplete the ser	itences be	elow.			
		(i)	All acids diss	olve in wa	ter to produce _		ions.	[1]
		(ii)	All alkalis dis	solve in w	ater to produce		ions.	[1]
	(c)	(i)	Complete the acid and a ba	-	vord equation fo	r the rea	ction between a	an
			acid + base	→		+		[2]
		(ii)	The reaction	between a	an acid and an a	lkali is d	escribed as:	
			combust	tion	neutralisatio	n	electrolysis	
			Circle the cor	rect answ	er.			[1]

5 All elements are made up of atoms. The diagram below shows the structure of an atom of element **Y**. Use the diagram below to answer the questions that follow.

Examiner Only				
Marks	Remark			

Y ?

_____[1]

(b) Element **Y** is in Period 2 of the Periodic Table. How does the diagram show this?

______[1]

(c) How many neutrons are there in the atom of Y shown in the diagram?

______ [1]

Element Y has two common isotopes.

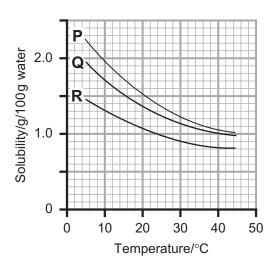
(d) (i) What are isotopes?

Isotopes are _____

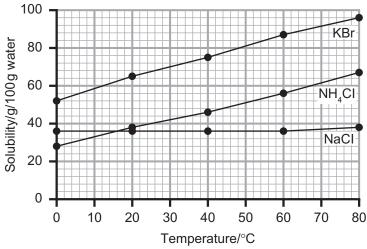
[2]

(ii) The diagram shows **one** of the two common isotopes. What is the relative atomic mass of the isotope shown?

______[1]


Solid chemical compounds can be many different colours. **Examiner Only** black white yellow red green blue In answering this question each colour may be used once, more than once or not at all. Choose, from the list, the correct colour of: sodium chloride _____ hydrated copper(II) sulfate _____ aluminium sulfate _____ copper(II) carbonate _____[4]

9017


BLANK PAGE

(Questions continue overleaf)

(a) Look at the two graphs below showing solubilities.

7

graph X graph Y

© GCSE Chemistry for CCEA by T Laverty & T Quigg, published by Hodder Education, 2011. ISBN 978 0340 985038. "Reproduced by permission of Hodder Education".

(i)	Describe the trend in solubility shown by the substances P ,	Q and
	R in graph X.	

		r c

(ii) In what physical state would you expect the substances P, Q and R to be?

_____[1]

(iii) Describe the trends in solubility for the substances in graph Y.

_____[2]

(iv) At what temperature do NaCl and NH₄Cl have the same solubility?

_____[1]

Examin Marks	er Only Remark

Rea	ad th	e following passage and answer the questions that follow.		Examin Marks	er Only Remark
wea rive	ather r. Th	er Bush is good for salmon fishing. In summer, after a spell of hor, heavy rain caused water from a nearby car park to run into the his water was warmed by the hot tarmac and it increased the river emperature by several degrees.		Walks	Remain
(b) (i)	(i)	What effect would increased water temperature have on the oxygen levels in the river water?			
			[1]		
	(ii)	Explain how salmon could be affected if the temperature in the river rises.			
			[2]		

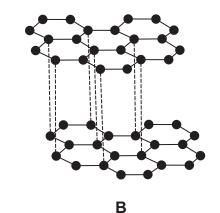
Aluminium is combined with small amounts of some other elements to produce a new material called **X**. This new material has improved properties making it tougher and stronger than pure aluminium. It has excellent corrosion resistance and very good resistance to seawater.

Examiner Only

Marks Remark

The table below gives some information about material ${\bf X}$.

elements used to make X	% by weight	relative atomic mass
aluminium		27
magnesium	0.8	24
silicon	0.6	28
iron	0.7	56
zinc	0.2	65
copper	0.4	64


(a)) Why can X be described as an alloy?					
		[2	_ <u>?]</u>			
(b)	(i)	Calculate the total percentage by weight of all the other elements added to aluminium in this alloy.	;			
		[1	1]			

(ii) Calculate the percentage by weight of aluminium in this alloy. Show your working.

%	[2]

(c)	(i)	From the information given in the passage opposite and your knowledge, explain why X would be very suitable in the manufacture of aircraft.	own	Examine Marks	r Only Remark
			_ [2]		
	(ii)	Suggest another use for X based on the information in the passage and the table.			
			_ [1]		

9 Two structural models are shown below.

© Chemistry in Use by Roland Jackson, published by Pearson Education Ltd. ISBN 9780582013941.

Further duplication other than for teaching and study is prohibited.

(a)	(i)	Name a	substance	which	has:
-----	-----	--------	-----------	-------	------

Structure **A** _____ [2]

(ii) What do the black dots in the structural models represent?

_____[1]

Examiner Only

In p	Examiner Only Marks Remark	
(b)	Compare and contrast the physical properties of the substances which have structures ${\bf A}$ and ${\bf B}$.	
	Your answer should include similar physical properties and physical properties which are different.	
	[6]	

(c) (i) Sodium reacts with sulfur to form a compound called sodium **Examiner Only** sulfide. Complete the diagrams below to show all the electrons in a sodium atom and in a sulfur atom. sodium atom sulfur atom [2] (ii) In the space below draw diagrams to show all the electrons in a sodium ion and in a sulfide ion. sodium ion sulfide ion [2] (iii) How are the ions held together in sodium sulfide? ____[1] (iv) What is the chemical formula for sodium sulfide? _____ [1] THIS IS THE END OF THE QUESTION PAPER

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.