Rewarding Learning

General Certificate of Secondary Education
2013-2014

Double Award Science: Physics

Unit P1
Foundation Tier
[GSD31]

MONDAY 19 MAY 2014, AFTERNOON

TIME

1 hour.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.
Write your answers in the spaces provided in this question paper.
Answer all nine questions.

INFORMATION FOR CANDIDATES

The total mark for this paper is 70 .
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question. Quality of written communication will be assessed in question 8(a).

For Examiner's use only	
Question Number	Marks
1	
2	
3	
4	
5	
6	
7	
8	
9	

1 (a) Complete the statements below to describe the energy change each device is designed to bring about.

The first one has been done for you as an example.

Loudspeaker
© Dorling Kindersley/ Thinkstock
Changes \qquad energy to \qquad energy.

人
 Match
 © iStock/ Thinkstock

Changes \qquad energy to \qquad energy.

Microphone
© iStock/ Thinkstock

Changes \qquad energy to \qquad energy.

Diesel engine
© iStock/ Thinkstock

Changes \qquad energy to \qquad energy.
(b) State the principle of Conservation of Energy.
\qquad
\qquad
(c) The table below shows the energy input and useful output values for 3 electric toasters. However, one value has been recorded incorrectly.

Toaster	Energy Input/J	Useful Output Energy/J
A	450	200
B	350	500
C	550	450

Which set of figures A, B or C is incorrect?
Answer \qquad
Explain your answer.
\qquad
\qquad

2 (a) Some nuclei are said to be radioactive.
What does radioactive mean?
\qquad
\qquad
(b) When measuring radioactivity, background activity is taken into account.
(i) Name a major source of background activity.
\qquad
\qquad
(ii) How is it taken into account when measuring radioactivity?
\qquad
\qquad
(c) Radioactive emissions can cause dangerous ionisations.

Name two precautions which are taken to minimise the risk to those using ionising radiations.

1. \qquad
2.

3 (a) Where are the protons, neutrons and electrons to be found in an atom?

Protons:

Neutrons: \qquad
Electrons:
(b) The symbol for an isotope of carbon is
(i) How many protons are there in this isotope of carbon-14?
(ii) How many neutrons are there in this isotope of carbon-14?
(iii) How many electrons are there in a neutral atom of carbon-14?
\qquad
(c) In terms of nuclear particles, explain the meaning of the word isotope.
\qquad
\qquad

\qquad

\qquad

I

4 To find the density of glycerine the following readings were recorded.

(i) State the mass of the empty graduated cylinder.

Mass of cylinder $=$ \qquad g [1]
(ii) Calculate the mass of the glycerine in the graduated cylinder.

Mass of glycerine $=$
(iii) State the volume of the glycerine in the graduated cylinder.

Volume of glycerine $=$ \qquad cm^{3}
(iv) Calculate the density of glycerine.

You are advised to show your working out.

Density of glycerine = \qquad $\mathrm{g} / \mathrm{cm}^{3}$
You are advised to show your working out.

5 A remote-controlled model helicopter, of mass 2.0 kg , accelerates upwards at $1.5 \mathrm{~m} / \mathrm{s}^{2}$.
(i) Calculate the resultant force acting on the helicopter.

You are advised to show your working out.

Resultant force $=$ \qquad N [3]

The diagram shows the forces acting on the helicopter.

(ii) State the weight of the helicopter. Remember its mass is 2.0 kg .

Weight = \qquad N [1]
(iii) Calculate the upward force on the helicopter by using
Upward force = Resultant force + Weight
\qquad

6 A trolley accelerates down a ramp.

In a particular experiment the results are shown below.

$$
\begin{aligned}
& \text { Speed at } A=0.5 \mathrm{~m} / \mathrm{s} \\
& \text { Speed at } B=1.1 \mathrm{~m} / \mathrm{s} \\
& \text { Time interval from } A \text { to } B=3.0 \mathrm{~s}
\end{aligned}
$$

(i) State the increase in speed of the trolley.
Increase in speed =
\qquad m / s [1]
(ii) Remember at time $t=0 \mathrm{~s}$, the speed of the trolley is $0.5 \mathrm{~m} / \mathrm{s}$. Draw a graph of the trolley's motion.

(iii) Calculate the acceleration of the trolley using the formula:

$$
\text { Acceleration }=\frac{\text { Increase in speed }}{\text { Time }}
$$

You are advised to show your working out.

Acceleration $=$ \qquad $\mathrm{m} / \mathrm{s}^{2}$
(iv) The average speed of the trolley as it rolls down the ramp is the average of its speeds at A and B.

Use the formula below to find the distance between points A and B.

Distance $=$ average speed \times time

You are advised to show your working out.

Distance $=$ \qquad m [3] he

\qquad

7 According to theory, the range \mathbf{R} of a cannonball depends on the horizontal velocity \mathbf{v} when fired from the top of a cliff.

A series of readings is shown in the table.

$\mathbf{v} / \mathbf{m} / \mathbf{s}$	0	5	10	15	20
$\mathbf{R / m}$	0	30	60	90	120

(a) (i) Label and choose a suitable scale for the vertical axis.
(ii) Plot the points on the grid and draw the straight line of best fit.

(b) Find the gradient of the graph.

Remember to include the unit for the gradient.
You are advised to show your working out.

Gradient $=$ \qquad
Unit $=$ \qquad
(c) Use the graph to find the range, \mathbf{R}, of the cannonball when its horizontal velocity is $12 \mathrm{~m} / \mathrm{s}$.
\qquad m [1

8 (a) Describe the process of nuclear fusion.
Your description should include:

- the particles involved
- what happens when nuclear fusion takes place
- where nuclear fusion occurs naturally

In this question you will be assessed on your written communication skills including the use of specialist scientific terms.
\qquad
(b) A great deal of money is being invested on research into nuclear fusion.
(i) Suggest a reason why.
\qquad
(ii) Give two practical difficulties which must be overcome before fusion reactors become viable.

1. \qquad
2.

9 An electric motor lifts a block of stone, of weight 150 N , through a vertical distance of 840 cm .

(i) Calculate the work done.

You are advised to show your working out.

Work done $=$ \qquad J [4]
(ii) Into what energy form has this work been changed?

Work has become \qquad
(iii) If the motor uses 2100 J of electrical energy, calculate the efficiency of the motor.

You are advised to show your working out.

Efficiency =

Sources:

Loudspeaker_102115818_Dorling Kindersley RF_Thinkstock.com
Match_180337696_istockphoto_Thinkstock.com
Microphone_137037071_istockphoto_Thinkstock.com
Engine_166575353_istockkphoto_Thinkstock.com
Helicopter_179287380_istockphoto_Thinkstock.com

