Rewarding Learning

General Certificate of Secondary Education

 2014
Double Award Science: Physics

Unit P2
Foundation Tier

[GSD61]

THURSDAY 12 JUNE 2014, MORNING

TIME

1 hour 15 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.
Write your answers in the spaces provided in this question paper.
Answer all nine questions.

INFORMATION FOR CANDIDATES

The total mark for this paper is 90 .
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.
Quality of written communication will be assessed in Question 4(c)(ii).

For Examiner's use only	
Question Number	Marks
1	
2	
3	
4	
5	
6	
7	
8	
9	
Total Marks	

1 The following diagram (not to scale) shows water waves travelling through deep water.

(a) (i) Use the diagram to find the wavelength of the waves in deep water. Remember the diagram is not to scale.

> Wavelength =
\qquad cm [1]
(ii) 10 waves are produced every 5 seconds. What is the frequency of the waves?
Remember to include the correct unit.
Frequency =
(iii) Use your answers to parts (a)(i) and (a)(ii) to calculate the speed of waves in deep water in cm/s.
You are advised to show your working out.

Speed $=$ \qquad cm/s
(b) The direction of the waves is shown in deep and in shallow water.

Marks Remark
(i) Draw two wavefronts in the shallow water.
(ii) What, if anything, happens to the speed and frequency of the waves as they enter shallow water?

Speed \qquad
Frequency \qquad [2]

2 Ultrasound waves have frequencies which are too high to be detected by the human ear.
(a) What type of waves are sound and ultrasound waves?
\qquad
(b) Describe a medical application of ultrasound waves.
\qquad
\qquad

Ultrasound waves are used to measure the depth of the sea.

The speed of ultrasound waves in water is $1500 \mathrm{~m} / \mathrm{s}$. The ship sends out a pulse of ultrasound and detects the reflection from the seabed 0.8 s after it is transmitted from the ship.
(c) Calculate the depth of the sea.

You are advised to show your working out.

Depth of the sea $=$ \qquad m [4]

Examiner Only

Marks Remark

BLANK PAGE

(Questions continue overleaf)

3 A letter L is placed in front of a mirror as shown below.

(a) Use the grid to draw the image of the letter L in the mirror.

Two mirrors are arranged at 90° as shown below. A ray of light is incident on mirror A .

(b) (i) Draw a normal where the incident ray strikes mirror A . Label it N .
(ii) What is the angle of incidence at mirror A ?

Angle of incidence $=$ \qquad
(iii) Continue the ray showing reflection at mirror B .
(iv) Calculate the angle of reflection at mirror B.
\qquad
(c) Visible light enters a glass prism.

Examiner Only
Marks Remark

The visible light is split into different colours.
(i) Name this process.
(ii) Starting with red, list the colours, in order, that you would observe on the screen.

Red \qquad
\qquad
(iii) Visible light is a member of the electromagnetic spectrum. Name a member with a wavelength shorter and a member with a wavelength longer than visible light.

1. Shorter wavelength than visible light \qquad
2. Longer wavelength than visible light \qquad [2]

4 Some solids are electrical conductors while others are insulators.
(a) Explain the difference between electrical conductors and insulators.
\qquad
\qquad
(b) A charge of 15 C passes through a resistor in a time of 50 s .

How much current flows through the resistor?
You are advised to show your working out.

Current $=$ \qquad A [3]
(c) Jenny sets up a circuit to measure the resistance of a metal wire.

(i) Complete the diagram of the circuit Jenny would set up to find the resistance of the metal wire.
(ii) Describe the experiment Jenny would carry out to investigate how the resistance of a wire would depend on its length. Your description should include:

- measurements to be taken,
- calculations to be made,
- the conclusion.

In this part of the question you will be assessed on your written communication skills, including the use of specialist scientific terms.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

5 A 4 V battery is connected to two equal resistors in parallel.

Examiner Only
Marks Remark
(a) (i) What is the reading on voltmeter V_{1} ?

Voltmeter $\mathrm{V}_{1}=$ \qquad V [1]
(ii) What is the reading on voltmeter V_{2} ?

Voltmeter $\mathrm{V}_{2}=$ \qquad V [1]

The battery supplies a total current I which divides into currents I_{1} and I_{2} as shown above.

Current I_{1} is 0.4 A .
(iii) What is current I_{2} ?

Current $\mathrm{I}_{2}=$ \qquad A [1]
(iv) What is current I?

$$
\text { Current } \mathrm{I}=
$$

\qquad
(v) Each resistor has a resistance of 10Ω. Calculate their combined resistance.
You are advised to show your working out.
\qquad Ω [2]
(b) (i) The diagram shows an electrical three pin plug. In the boxes label the pins live, neutral or earth.

(ii) State the colour of the live wire.

Colour:
(iii) Wires are connected to the three pins. Which wire protects the user from electric shock?
\qquad
(iv) The plug is connected to a kettle and a current of 6.0A flows through the live wire. What current flows in the earth wire?

Current $=$ \qquad A [1]

6 (i) What do you understand by the term "direct current"?

Examiner Only
Marks Remark
(ii) Name a source of direct current.
\qquad
(iii) What do you understand by the term "alternating current"?
\qquad
\qquad
(iv) Name a source of alternating current.

Four traces, A, B, C and D, are shown and the dotted line represents zero voltage.

(v) 1. Which trace (or traces) represent a.c.?

Trace(s): \qquad
2. Which trace (or traces) represent d.c.?

Trace(s): \qquad
(vi) What instrument would you use to display the above traces?
\qquad

BLANK PAGE

(Questions continue overleaf)

7 The questions below are concerned with the structure of the Earth.
The diagram represents a cross section (not to scale) through the Earth.

Earth's surface

(a) The mantle has been labelled for you. Label the layers 1, 2 and 3. [3]
(b) Name two major elements found below the mantle.

1. \qquad
2.

Examiner Only
Marks Remark

The lithosphere is the layer of the Earth which is divided into plates, called tectonic plates.
(c) (i) What do you understand by the term "lithosphere"?
\qquad
\qquad
(ii) What allows the tectonic plates to move?
\qquad
(iii) Name two large-scale processes which occur because of the movement of the plates that make up the lithosphere.
\qquad and \qquad

8 A ball bearing is released at the surface of a liquid contained in a tall glass cylinder.

Its velocity is measured every second as it falls through the liquid and the results are recorded in the table.

Time in s	0	1	2	3	4	5	6	7
Velocity in cm/s	0	0.2	0.4	0.6	0.8	1.0	1.0	1.0

(a) On the graph below choose and label a suitable scale on the vertical axis.
Plot points of velocity against time.

(b) Draw the graph.
(c) (i) Over what time interval is there direct proportion between the two quantities?
\qquad
(ii) Explain the reason for your choice.
\qquad
\qquad
(iii) Find the gradient of the graph during the first four seconds and give its unit.

You are advised to show your working out.

> Gradient =
\qquad
Unit $=$ \qquad

9 A satellite, situated in space, may be used to pass a microwave signal from one part of the Earth to the other as shown in the diagram.

(a) What two properties of microwaves allow the signal to travel from the transmitter to the satellite?
\qquad
\qquad
(b) Give two uses of artificial satellites, other than communications.

1. \qquad
2. \qquad

THIS IS THE END OF THE QUESTION PAPER

