

Ce	ntre Number
71	
Cano	didate Number

General Certificate of Secondary Education 2013–2014

Double Award Science: Chemistry

Unit C1

Higher Tier

[GSD22]

THURSDAY 15 MAY 2014, MORNING

TIME

1 hour.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.

Write your answers in the spaces provided in this question paper. Answer **all eight** questions.

INFORMATION FOR CANDIDATES

The total mark for this paper is 70.

Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question. Quality of written communication will be assessed in Question 7. A Data Leaflet, which includes a Periodic Table of the Elements, is included in this question paper.

For Exa	miner's only
Question Number	Marks
1	
2	
3	
4	
5	
6	
7	
8	

lotal	
Marks	
IVIAINS	

Potassium is a soft metal which can be cut with a knife. It reacts violently with chlorine to form potassium chloride.	Examiner Only Marks Remark
(a) Complete and balance the symbol equation below for the reaction of potassium with chlorine.	
$K + Cl_2 \rightarrow$ [2]	
(b) Describe the appearance of a piece of freshly cut potassium.	
[1]	
(c) What happens to the freshly cut potassium when it is left in the air for a few minutes?	
[1]	
(d) Why is potassium stored under oil in the laboratory?	
[1]	
 (e) Before reacting Group 1 elements with water a risk assessment is carried out. Give two safety precautions, apart from wearing safety glasses, which must be included in the risk assessment. 1	
2 [2]	

(f) Equal sized pieces of three Group 1 metals are added to separate troughs of water which contain universal indicator.

The observations made are recorded in the table below.

Examiner Only		
Marks	Remark	

Name of Group 1 metal	Observation when the metal is added to water	Colour of universal indicator
potassium	 catches fire burns with a lilac flame on the surface of the water quickly disappears 	changes colour from green to blue
lithium	floatsmoves about the surface of the watereventually disappears	changes colour from green to blue
sodium	 melts into a silvery ball on the surface of the water disappears 	changes colour from green to blue

Read the information in the table carefully

	ad the infermation in the table carolany.	
(i)	What happens to the reactivity of the Group 1 elements as the Group is descended? You may find your Data Leaflet helpful.	
		[1]
(ii)	Explain fully why the universal indicator changed colour from green to blue.	
		[3]
(iii)	Give one more observation which could be added to the table fe all three reactions.	or
		[1]
(iv)	Write a word equation to describe the reaction between sodium and water.	1

9476 **3 [Turn over**

_[2]

Explain what is m	nts which reacted in a singleant by the term elemer	nt.	
Complete the sentend	ce.		
b) In his Periodic Ta	ble, Mendeleev arranged	d the elements in order of	of
increasing		·	[1]
in Group 5 of the		Motol/Nov motol	
Name	Symbol	Metal/Non-metal	
phosphorus			
	Bi		
			[2]
(d) Nitrogen is also a	Group 5 element. What	Period is nitrogen in?	
Period	·	. ened ie ma egen mi	[1]
	n electronic configuration oup 5 of the Periodic Tab		s not
			_ [2]

BLANK PAGE

(Questions continue overleaf)

-	ction of acid A and the base, magnesium hydroxide.	Marks Remar
(a)	Name acid A which reacts with magnesium hydroxide to produce magnesium chloride.	
	[1]	
b)	Suggest a reason why magnesium hydroxide is described as a base and not as an alkali.	
	[1]	
c)	Explain why the reaction between acid A and magnesium hydroxide is a neutralisation reaction.	
	[1]	
	gnesium chloride is also formed by the reaction of magnesium oxide	
d)	What would you expect to observe when acid A is added to magnesium oxide?	
d)		
d)	magnesium oxide?	
(d)	magnesium oxide?	
(d)	magnesium oxide?	
d)	magnesium oxide?	
(d)	magnesium oxide?	
(d)	magnesium oxide?	
(d)	magnesium oxide?	

(e) A solution of 0.05 mol/dm³ acid Y was tested using a pH meter and universal indicator paper. The results are recorded in the table below.

Examin	er Only
Marks	Remark

Test	Result
pH meter	pH = 3.03
Universal indicator	orange pH = 3

(i)	Explain how the colour of universal indicator is used to give a
	pH value.

		[1]
		111

(ii) How do the results show that acid Y is a weak acid?
--

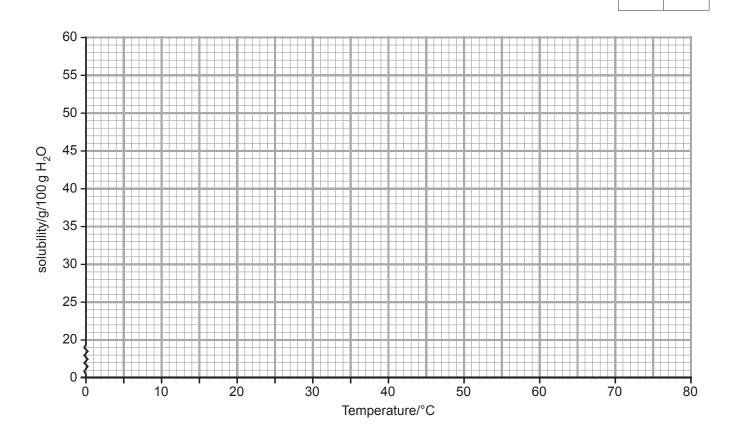
		r

(iv) Which property of the acid is measured in the units mol/dm³? Circle the correct answer.

mass	volume	concentration	strength	
				[1]

4 (a) An investigation was carried out to find the solubility (g/100 g H₂O) of potassium chloride at different temperatures. The results are given in the table below.

Temperature (°C)	0	10	20	30	40	50	60	80
Solubility (g/100 g H ₂ O)	27.8	30.9	34.0	37.1	40.0	42.9	45.8	51.2


(i) At 70 °C, 12.1 g of potassium chloride will saturate 25 g of water. Calculate the solubility of potassium chloride at 70 °C. (You must show your working out.)

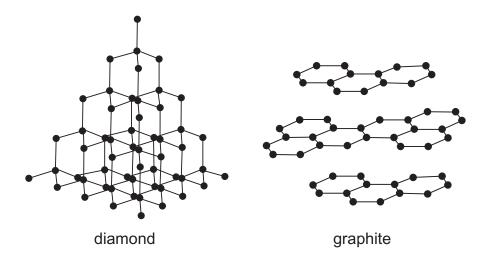
g/	100	g	H_2O	[1]
 _		_		

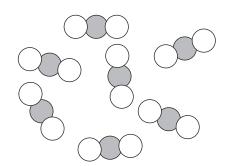
[3]

Examiner Only

(ii) On the grid below draw the solubility curve for potassium chloride.

(b) The table below gives the solubility (g/100 g $\rm H_2O$) at different temperatures for four **solid** compounds, A, B, C and D.


Solid			Solubi	lity (g/100 g	g H ₂ O)		
Solid	0°C	10 °C	20 °C	30 °C	40 °C	60 °C	80 °C
Α	60.0	66.7	73.9	81.8	88.7	106.0	132.0
В	12.3	16.4	18.6	25.0	31.6	40.4	49.0
С	0.22	0.24	0.25	0.26	0.26	0.24	0.23
D	79.2	85.4	94.2	105.0	119.0	158.0	187.0


Use the data in the table to complete the following general	rule.	Examin Marks	er Only Remark
For most solids the solubility	as the		
temperature	[1]		
rule. Describe fully what happens to the solubility of this solid as temperature is increased from 0 °C to 80 °C.	the		
	C to		
Answer	g [2]		
	For most solids the solubility One of the compounds in the table does not follow this solution rule. Describe fully what happens to the solubility of this solid as temperature is increased from 0 °C to 80 °C. Calculate the mass of solid B which will crystallise when a saturated solution of B, in 50 g of water, is cooled from 60 ° 10 °C. (You must show your working out.)	One of the compounds in the table does not follow this solubility rule. Describe fully what happens to the solubility of this solid as the temperature is increased from 0 °C to 80 °C. [2] Calculate the mass of solid B which will crystallise when a saturated solution of B, in 50 g of water, is cooled from 60 °C to 10 °C.	For most solids the solubility

The formula for sodium oxide is Na ₂ O.			er Only
(a) Draw diagrams to show how two sodium ions and an oxide ion are formed when two sodium atoms react with an oxygen atom.	:	Marks	Remark
	[4]		
(b) Explain how the ions are held together in the compound, sodium oxide.			
	_ [2]		

6 The diagrams below represent the structures of two allotropes of carbon, diamond and graphite, and of carbon dioxide. The atoms of each substance are held together by covalent bonds.

Examin	er Only
Marks	Remark

carbon dioxide

(a) What are allotropes?

Allotropes are _____

_____[2]

(b) Explain how a covalent bond is formed.

_____[1]

(c)	Draw a dot and cross diagram to carbon dioxide. (Show all the e	to show the bonding in a molecuelectrons)	le of	Examiner (Only emark
			[3]		
(d)	Complete the table below, by a of each substance. The first one	dding the name of the type of stree is done for you.	ructure		
	Substance	Type of structure			
	diamond	giant covalent			
	graphite				
	carbon dioxide				
_			[2]		
	phite is used in pencil leads.				
(e)	Explain, with reference to the step pencil leads.	tructure of graphite, why it is use	ed in		
			[2]		

Describe the structure and bonding in a metal and explain why metals luctile.	are Exam
ou will be assessed on your written communication skills include he use of specialist science terms.	ding
	[6]

	e table below which gives info iide conduct electricity.	ormation about how lead a	and
Substance	Name of particle which moves and carries the charge	Effect on the substance due to the passage of electricity	
lead			
lead(II) bromide			
	l	I.	[4]
(ii) Write a	nalf equation to describe the r	reaction at the anode.	[2]
(iii) What ca	n be observed at the anode?		
(iii) What ca	n be observed at the anode?		
(iii) What ca	n be observed at the anode?		

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.