

General Certificate of Secondary Education 2014–2015

Double Award Science: Physics

Unit P1

Higher Tier

[GSD32]

FRIDAY 14 NOVEMBER 2014, MORNING

MARK SCHEME

Introduction

Mark schemes are published to assist teachers and students in their preparation for examinations. Through the mark schemes teachers and students will be able to see what examiners are looking for in response to questions and exactly where the marks have been awarded. The publishing of the mark schemes may help to show that examiners are not concerned about finding out what a student does not know but rather with rewarding students for what they do know.

The Purpose of Mark Schemes

Examination papers are set and revised by teams of examiners and revisers appointed by the Council. The teams of examiners and revisers include experienced teachers who are familiar with the level and standards expected of students in schools and colleges.

The job of the examiners is to set the questions and the mark schemes; and the job of the revisers is to review the questions and mark schemes commenting on a large range of issues about which they must be satisfied before the question papers and mark schemes are finalised.

The questions and the mark schemes are developed in association with each other so that the issues of differentiation and positive achievement can be addressed right from the start. Mark schemes, therefore, are regarded as part of an integral process which begins with the setting of questions and ends with the marking of the examination.

The main purpose of the mark scheme is to provide a uniform basis for the marking process so that all the markers are following exactly the same instructions and making the same judgements in so far as this is possible. Before marking begins a standardising meeting is held where all the markers are briefed using the mark scheme and samples of the students' work in the form of scripts. Consideration is also given at this stage to any comments on the operational papers received from teachers and their organisations. During this meeting, and up to and including the end of the marking, there is provision for amendments to be made to the mark scheme. What is published represents this final form of the mark scheme.

It is important to recognise that in some cases there may well be other correct responses which are equally acceptable to those published: the mark scheme can only cover those responses which emerged in the examination. There may also be instances where certain judgements may have to be left to the experience of the examiner, for example, where there is no absolute correct response – all teachers will be familiar with making such judgements.

1	(a)	loss or gain electron(s)	[1]	AVAILABLE MARKS	
	(b)	 Any two from: shielding (e.g. use gloves/goggles/glass shield) keep at a distance (e.g. use tongs/robotic arms) keep exposure time small/work quickly Reject radiation badge or store in lead boxes [1] × 2 	[2]		
	(c)	(i) Mass number or Atomic Mass number or Nucleon number	[1]		
		(ii) $240 \rightarrow 120 \rightarrow 60 \rightarrow 30$ One halving [1] mark, 3 half-lives identified/halving to 30 but no further [1] 15 (y) [1]	[3]	7	
2	(a)	 (a) Weight of person measured (or mass × 10) with scale(s)/balance/newtonmeter Height of one step measured and multiplied by no. of steps/total height with metre rule or ruler or metre stick Time to run up steps or go up steps with stopwatch/stopclock timer 			
	R	esponse	Mark		
	sp	andidates describe 5 or 6 of the above points. They use good pelling, punctuation and grammar. The form and style are of a gh standard and specialist terms are used appropriately.	[5]–[6]		
	sa ar	andidates describe 3 or 4 of the above points. They use atisfactory spelling, punctuation and grammar. The form and style of a satisfactory standard and they have made use of some becialist terms.	[3]–[4]		
	sp	andidates describe 1 or 2 of the above points. They use limited pelling, punctuation and grammar. The form and style are of a nited standard and they have made no use of specialist terms.	[1]–[2]		
	R	esponse not worthy of credit.	[0]		
	(b)	(i) $P = w/t [1]$ = (400 × 6)/3 [1] = 800 (W) [1]	[3]		
		(ii) 0.8(kW) e.c.f. from (b)(i)	[1]	10	

3	(i)	No. of blocks	1	2	3	4	5		AVAILABLE MARKS
		Weight/N	20	40	60	80	100		
		Area/m ²	1.5	1.5	1.5	1.5	1.5	-	
		Pressure/N/m ²	13	27	40	53	67		
		$\left[\frac{1}{2}\right] \times 4$ (round up	[2	2]					
	(ii)	Scale at least half	[2	2]					
	(iii)) At least four points [2] Three points [1]					[2	2]	
	(iv)	Best fit line					[^	1]	
	(v)	Evidence from graph [1] 4 blocks [1] (4 blocks get 2/2 immediately) Min. evidence = 1 horizontal or vertical line or point on graph [2]						2]	
	(vi)) Gradient = Δy/Δx or similar [1] = any value between 0.6–0.7 [1]						2]	11
4	(i)	Eff = Useful output energy/input energy [1] 0.8 = o/p / 500 (or equivalent) [1] o/p = 400 (J) [1]					[3	3]	
	(ii)	Less (fossil) fuel consumption [1] Less atmospheric pollution or reduces carbon footprint [1] Resource free Renewable							
		Reject economic arguments					[2	2]	5
5	(a)	0–20 s: Acceleration or uniformly increasing velocity Not deceleration					[′	1]	
		20–25 s: Constant (or uniform or steady) velocity					[1	1]	
	(b)	Total displacement = area under graph [1] = $(0.5 \times 17 \times 20)$ [1] + (17×5) [1] = 255 (m) [1]						4]	
	(c)	(Av.) Vel. = (total) displac./(te	otal time) [1]]				
		$=\frac{255}{25}$	allow e.c	c.f. from (b))	[1]				
		= 10.2	(m/s) [1]				[3	3]	9

- 6 Measure background count/radiation
 - Put a sheet of aluminium between the source and detector (or implied)
 - Take reading from counter **or** measure count rate **or** measure counts/second
 - Repeat with more aluminium sheets
 - Until count reading is equal to background count
 - Record thickness of aluminium

	[0]	
Response	Mark	
Candidates describe 5 or 6 of the above points. They use good spelling, punctuation and grammar. The form and style are of a high standard and specialist terms are used appropriately.	[5]–[6]	
Candidates describe 3 or 4 of the above points. They use satisfactory spelling, punctuation and grammar. The form and style are of a satisfactory standard and they have made use of some specialist terms.		
Candidates describe 1 or 2 of the above points. They use limited spelling, punctuation and grammar. The form and style are of a limited standard and they have made no use of specialist terms.	[1]–[2]	
Response not worthy of credit.	[0]	
) 230 [1] 226 [1] 4 [1] 2 [1] i) Alpha or α or helium nucleus or He nucleus) ACM = CM [1] or F_1d_1 or F_2d_2 960 × d = 80 × 90 [2] d = 7.5 (cm) [1]	[4] [1] [4]	
i) Move pivot closer to load	[1]	
a) 15 000 (N)	[1]	
 b) R.F. = ma [1] or F = ma (F - 15000) [1] = 2500 × 3 [1] (Allow e.c.f. from (a)) = 22 500 (N) [1] or R.F. = ma [1] = 2500 × 3 [1] = 7500 [1] F = 22 500 (N) [1] 	[4]	

AVAILABLE MARKS

6

5

5

5

[6]

7

8

9

10 (a) K.E. = ¹/₂ m v² [1]

(a)	K.E. = ½ m v ² [1]			AVAILABLE MARKS
	$72 = \frac{1}{2} 0.16 v^2 [1]$	or $v^2 = \frac{2 \text{ K.E.}}{\text{m}}$ [1] or $v = \sqrt{\frac{2 \text{ K.E.}}{\text{m}}}$		
	Any re-arrangement with one unknown [1]	$v^2 = \frac{2 \times 72}{0.16}$ [2] (1 for each sub line	e)	
	v = 30(m/s) [1]	v = 30 (m/s) [1]	[4]	
(b)	Momentum = mass \times velocity	[1]		
	vel = $\frac{3}{0.15}$ [1] or equivalent			
	vel = 20 (m/s) [1]		[3]	7

Total

70