TattaCambridge

CAMBRIDGE INTERNATIONAL EXAMINATIONS

June 2003

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 40

SYLLABUS/COMPONENT: 9700/01

BIOLOGY
Paper 1 (Multiple Choice)

Page 1	Mark Scheme	Syllabu
	A/AS LEVEL EXAMINATIONS – JUNE 2003	9700

			_	m	2
		Mark Scher	ne	Syllabi	.0
	A/AS LE	VEL EXAMINATION	ONS – JUNE 2003	9700	100
	Question Number	Key	Question Number	Key	W. PapaCambridge
-	1	D	21		
	2	Ā	22	В	`
	3	С	23	В	
	4	С	24	Α	
	5	A	25	C	
-					
-	6	С	26	С	
	7	D	27	В	
	8	Α	28	В	
	9	В	29	С	
	10	Α	30	D	
-					
_	11	В	31	Α	
	12	С	32	С	
	13	В	33	С	
	14	С	34	D	
	15	D	35	В	
_					
_	16	Α	36	В	
	17	D	37	D	
	18	Α	38	В	
	19	С	39	В	
	20	С	40	С	

TOTAL 40

June 2003

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9700/02

BIOLOGY Paper 2 (Theory 1)

		May
Page 1	Mark Scheme	Syllabu
	A/AS LEVEL EXAMINATIONS – JUNE 2003	9700
	KEY	Syllabi. DahaCambhidge.com
a semi colon ;	indicates a separation of marking po	ints
an oblique line /	indicates alternative wording or acce	ptable alternative

KEY

R means reject

Α means accept

AW means 'alternative wording'

underlined with a accept this word only, no alternative word is

straight line acceptable

D represents quality mark(s) awarded for diagrams, as

indicated on the Mark Scheme

L represents mark(s) awarded for labels on diagrams,

as indicated on the Mark Scheme

Q represents quality of expression and is used for marks

awarded on free-response questions

Page 2	Mark Scheme	Syllabi
	A/AS LEVEL EXAMINATIONS – JUNE 2003	9700

	4	a.
Page 2	Mark Scheme Syllab.	3.0
_	A/AS LEVEL EXAMINATIONS – JUNE 2003 9700	25
Question	Expected Answers	Marks 1 Con
1 (a)	C, E, D, B;	1 3e.co
(b)	centromeres have divided/duplicated; R. split R. replicated (sister) chromatids/(daughter) chromosomes pulled/moved/ separate/migrate to (opposite) poles; ref. to the spindle/microtubules/spindle fibres; R. fibres	max 2
(c)	replication/DNA synthesis; assembly of nucleotides/polynucleotide (chain) formed; (alongside) old/original/both strands, act as template; by base/complementary pairing/ A-T and G-C; quantity of DNA doubles/two new double helices formed;	max 3
(d)	production of <u>genetically</u> identical cells/ <u>genetically</u> uniform cells/ identical DNA/maintains <u>genetic</u> stability/same number <u>and</u> kind of c-somes/no <u>genetic</u> variation;	
		[Total 7]

2 (a) Award one mark per column. No penalisation for complete lack of **all** crosses (or **all** ticks) unless mixture of x and \checkmark missing as agreed

statement	emphysema	tuberculosis	obesity	rickets	smallpox
eliminated by vaccination	x	x	х	x	✓
a worldwide infectious disease	x	✓	x	х	✓ or x
a form of malnutrition	х	x	✓	✓	х
a deficiency disease	x	x	Х	✓	х
involves degeneration of lung tissue	✓	✓ or x	x	х	x

[Total 5]

		the transfer of the transfer o
Page 3	Mark Scheme	Syllaba
	A/AS LEVEL EXAMINATIONS – JUNE 2003	9700
3 (a)	Correct letter order on Question Paper:	Syllabu Pada Cambridge Com
o (u)	A - nucleus;	Tage
	C - mitochondria; B - RER;	COM
	D - Golgi apparatus; E - cell surface membrane;	
	R. process statements instead of letters	max 4
(b)	secrete/release/produce/make antibodies; A. immunoglobulins	1
	R. memory cells unless linked to antibody production	
(c)	nucleus/nuclear envelope/nuclear membranes/nucleol no cell wall;	us;
	have organelles/named visible organelles; (golgi/mitooRER) R. more organelles	chondrion/
	larger (cell); fixed ribosomes/ribosomes attached to E.R./no free ribosomes;	max 2
	nibosomos,	max 2
		[Total 7]
4 (a)	(i) shade in xylem; (<u>complete</u> xylem star must be shade	ded) 1
	(ii) shade in phloem; (A. shading of just one phloem g	roup) 1
		• ,
(b)	ref to bending/provide support/strength; R. lignin unqua R. prevents collapsing	lified 1
(c)	osmosis/diffusion; down water potential gradient/from high/less negative to negative water potential/AW; (R. osmotic potential/concless or more) through partially/selectively/differentially permembrane; R. semi-permeable	c. gradients/
(d)	transpiration pull/cohesion-tension/cohesion-adhesion/mass flow in xylem;	
	into spongy mesophyll (cells); many cell walls/surfaces/large surface area; evaporatio (from damp walls); into (substomatal/intercellular) air sp of water vapour/water as a gas/described; (e.g. movem vapour from high to low conc.) through stomata/cuticle atmosphere);	paces; diffusion ent of <u>water</u>
	(ignore ref. to apoplast, symplast, vacuolar pathways)	
	(3)	

[Total 9]

		my.
Page 4	Mark Scheme Syllab	7.D.
	A/AS LEVEL EXAMINATIONS – JUNE 2003 9700	80.
5 (a)	(i) haem; R. incorrect spelling combines/binds with/carries/holds/takes up/transports oxyg	gen; 2
	(ii) soluble/polar/hydrophilic (on outside)/compact/spherical/cu coiled/folded (into a ball)/metabolically active;4 polypeptides;	gen; 2
(b)	iron needed for haem /haem contains iron; less haemoglobin (made); R. less RBCs less oxygen transported/supplied/delivered (to cells/tissues); less respiration/respiration rate decreased; R.respiration less efficient/effective	max 3
(c)	muscle; A. cardiac/skeletal/involuntary muscle R. named muscle, e.g. biceps muscle	1
(d)	(i) 90%; 25%; A. within range 23-25% R. 23-26%, 22-25% (N.B. Both % need to be correct for <u>one</u> mark)	1
	 (ii) haemoglobin unloads/releases oxygen/dissociates, easily/readily/at higher ppO₂ (in tissues/cells); (whilst) myoglobin holds on to oxygen/is very stable/does not dissociate easily/has a higher affinity for oxygen; (so) providing a store/reservoir/reserve of oxygen; (so will not) release oxygen until the pp/conc./tension of ox is low/during strenuous exercise; so delaying anaerobic respiration; 	ygen max 3
(e)	S-shaped curve to the right of H ; (N.B. curve should be S-shaped, start at 0, plateau out at between 90-98% saturation, show 50% plus saturation at pp	
	of 6kpa)	1
		[Total 13]

[Total 13]

6 (a) Two correct letters required for a mark for each column if list given; mark first 2 letters.

Alcohol	Caffeine	Nicotine	Heroin
U	S	S	U
V	T	T	Υ
Υ	Z	W	W
Z		X	
		Z	

Page 5	Mark Scheme	Syllabi
	A/AS LEVEL EXAMINATIONS – JUNE 2003	9700
		30

-ambridge.com (b) decrease in response to drug/effect of drug becomes less (intense); decrease in sensitivity of receptors/more receptors are made; drug is metabolised/becomes part of body's metabolism; more drug necessary to achieve the same effect/sensation/euphoria; max 2

award marks from any annotated diagrams (c) Either

> inhibitor fits site other than active site/allosteric site; tertiary/3D structure or shape changes/any two bonds mentioned break; (ionic, van der Waals, hydrophobic, hydrogen, disulphide, covalent)

active site changes shape;

substrate no longer fits/binds/active site no longer complementary to substrate/E.S. complex not formed;

or

inhibitor fits permanently/irreversibly into active site; substrate can no longer bind/substrate blocked/no E.S. complex formed:

increasing substrate has no effect;

max 3

<u>Either</u> mark scheme as appropriate – <u>do not mix</u> marking points from both mark schemes

[Total 9]

Total mark for paper = 50

June 2003

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 25

SYLLABUS/COMPONENT: 9700/03

BIOLOGY Paper 3 (Practical 1)

Page 1	Mark Scheme	Syllabu
	A/AS LEVEL EXAMINATIONS – JUNE 2003	9700

Page 1	Mark Scheme		Syllabu
	A/AS LEVEL EXAMINATIONS – J	UNE 2003	9700
Question	Expected Answers	Mark	Additional Guidance
(a) (i)-(iii)	T1 > T2; T1 results have increased; 35-40 means correct; 45-50 means correct;	1 1 1 1	Syllabu 9700 Additional Guidance
(b)	Allow the yeast to get to the correct temperature; Allow the gas to expand and vent/contract and suck back;	1	
(c)	Correct ref. to results e.g. T1 higher; Increased kinetic energy of molecules/move faster; More collisions; Rate of diffusion of glucose into yeast;	1 1 1 1	REJECT unqualified rates of reaction. If T1 lower then ecf, i.e. accept correct ref. to table and denaturisation i.e. max 2
(d)	Two from: Explanation of control, i.e. yeast or no yeast/enzyme; eliminate effects of gas expansion due to temp fluctuations; Number of bubbles produced by T2 deducted from totals for T1;	Max 2	IGNORE for better comparison/control/fair test
(e)	Three from: Not alternate counting; Keep at constant temperature; Take more readings; Control pH; Measure volume of gas;	Max 3	Allow reduce volume of reagents if qualified
	Wedsure volume of gas,	(15)	
2 (a)	Clear single lines (quality); 3 arms to drawing; Nuclei drawn; Red blood cells smaller than nuclei; Wall of alveoli not more than 3 diameters of nuclei;	1 1 1 1	
	3 correct labels from: air space/alveolus; nucleus; cytoplasm; cell membrane; red blood cells; epi/endothelium; alveolus wall;	3 Max 6	

A/AS LEVEL EXAMINATIONS – JUNE 2003 9700 (b) 4 from: Procedure explained; Random sample; Repeat 3 or more times; Calculate means; Ratio calculated between 1:4 and			Syllaba N. A.
(b) 4 from: Procedure explained; Random sample; Repeat 3 or more times; Calculate means; Ratio calculated between 1:4 and	Page 2	Mark Scheme	Syllabi
(b) 4 from: Procedure explained; Random sample; Repeat 3 or more times; Calculate means; Ratio calculated between 1:4 and		A/AS LEVEL EXAMINATIONS – JUNE 2003	9700
		Procedure explained; Random sample; Repeat 3 or more times; Calculate means;	Cambridge.com

(10)

Paper Total 25

June 2003

GCE A LEVEL

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9700/04

BIOLOGY Paper 4 (Theory 2 (A2 Core))

			Mann, Papac
Page	e 1	Mark Scheme Syllab	ous o
		A/AS LEVEL EXAMINATIONS – JUNE 2003 970	200
1 (a)	pack	nalf of leaf/just below (upper) epidermis; led (densely); axis in line with incident light/AW;	2 max
(b)		ain large numbers of chloroplasts/large amount of chlorophylle vacuole; (only give if linked to next point)	

(b) contain large numbers of chloroplasts/large amount of chlorophyll; large vacuole; (only give if linked to next point) chloroplasts (in cytoplasm) close to cell wall/cell membrane; short diffusion pathway; (cell) elongated/arranged to intercept (maximum) light; thin (cell) wall; ref. movement of chloroplasts;

3 max

contains photosystems/PS1 and PS2/chlorophyll and accessory pigments/ (c) reaction centres: maintain carriers/receptors in position; site of photophosphorylation/light reaction; site of ETC; ref. proton pumping/proton gradient; large surface area; produce ATP/ref. ATP synthase; produce reduced NADP;

4 max

(d) ref. to Rubisco; carbon dioxide combines with RuBP; driven/powered by ATP; and reduced NADP; forms PGA;

2 max

Total: 11

2 (a) provides energy; suitable examples; e.g. muscle contraction, protein synthesis, DNA replication, cell movement, active transport

3

(b) substrate level phosphorylation cytoplasm (in glycolysis); matrix of mitochondria (in Krebs cycle); inner membrane of mitochondria/cristae; oxidative phosphorylation

2 max

(c) oxidative phosphorylation more than substrate level phosphorylation; ref. to quantity, e.g. 32/34 vs. 4/6 per glucose;

Page 2	Mark Scheme	Syllabus
	A/AS LEVEL EXAMINATIONS – JUNE 2003	9700

WANN, PARACAMBRIDGE, COM (d) requires proton gradient produced by ETC; with no oxygen ETC does not occur/no electron flow; NAD cannot be reformed/NADH cannot be oxidised; oxygen combines with electron/proton/oxygen final acceptor in ETC;

Total: 10

- 3 (a) vesicles containing transmitter/acetylcholine/synaptic vesicle; Α
 - presynaptic membrane;
 - C synaptic cleft/gap;
 - D post synaptic membrane;
 - Ε receptor/protein/Na⁺ gate;

(b) arrow pointing down;

1

5

ref. low Ca²⁺ in synaptic knob/high Ca²⁺ outside knob; (c) action potential/depolarization causes opening of Ca²⁺ channels; Ca²⁺ into synaptic knob; causes vesicles to move towards presynaptic membrane; causes vesicles to fuse with presynaptic membrane; vesicle contents/transmitter/exocytosis into synaptic cleft/gap;

3 max

Total: 9

4 (a) metaphase;

II; (allow one mark for telophase and two marks for telophase 1)

2

(b) ref. spindles/microtubules shorten contract/pull/breakdown; centromeres divide; choromatids (pulled) apart; to opposite poles; chromosomes unwind/AW; nuclear membrane reforms; ref. cytokinesis/cleavage;

4 max

independent/random assortment; of homologous chromosomes; different combinations of parental chromosomes; crossing over/chiasmata; between chromatids of homologous chromosomes/non-sister chromatids; breaks up linkage groups/mixes alleles from parents; R genes ref. to non-identical/genetically different gametes;

4 max

Total: 10

Page 3	Mark Scheme	Syllabus
	A/AS LEVEL EXAMINATIONS – JUNE 2003	9700

hus PapaCambridge.com 5 (a) phenotype is the feature/characteristic; results from interaction of genotype and environment on organism/ environment may alter the appearance of an organism; genotype unaffected by environment; genetic characteristics inherited/passed on to offspring/ora/represents alleles possessed;

2 max

artificial selection carried out by humans; (b) choose organisms with useful characteristics/benefit to humans; natural selection carried out by environment; ref. survival (to breed); ref. evolution;

3 max

(c) (i) length of DNA/sequence of bases/locus on a chromosome; coding for a characteristic/protein/polypeptide/enzyme;

2

(ii) alternative form of a gene; determining contrasting characters/controls one form of a character; occupies same locus; ref. sequence of bases; ref. dominance;

3 max

Total: 10

June 2003

GCE A LEVEL

MARK SCHEME

MAXIMUM MARK: 30

SYLLABUS/COMPONENT: 9700/05

BIOLOGY Paper 5 (Practical 2 (A2))

Page 1	Mark Scheme	Syllabus	
	A/AS LEVEL EXAMINATIONS – JUNE 2003	9700	

			May 1
Page 1	Mark Scheme		Syllabus
	A/AS LEVEL EXAMINATIONS – JUN	IE 2003	9700
Question	Expected Answers	Marks	Additional Guidanc
1 (a) (i)	F1 does not change/∞; F2 changes quickest/F3 2 nd to change;	1 1	Syllabus 9700 Additional Guidance Additional Guidance
(ii)	Blue;	1	
(iii)	F1 renal vein (plasma); F2 urine; F3 renal artery (plasma);	Max 2	ENSURE ecf from (a) (i) 3 = 2 2 = 1
	1 mark for each correct explanation, i.e.F1 urea removed by kidney;F2 high concentration of urea;F3 low concentration of urea;	1 1 1	
(b)	Two from: start all three at same time; replication; means of more precise pH measurement	Max 2 (10)	
		(10)	
2 (a)	2 cells only drawn; columnar; cells tapering; brush border drawn by single line; large nuclei almost cell width; 3 correct labels from brush border; nucleus; nuclear membrane; cell membrane; cytoplasm; max 1	Max 4	3 correct labels = 1 mark
(b)	Both circular/oval/angular/NOT columnar; circular nucleus; Nucleus proportionately smaller than (a); Clear unbroken lines; 3 correct labels from: nucleus; nuclear membrane; chondrocyte; lacuna; intercellular matrix; cytoplasm; cell membrane; max 1	Max 4	3 correct labels = 1 mark

			2
age 2	Mark Scheme		Syllabus
	A/AS LEVEL EXAMINATIONS – JUN	E 2003	9700
(c)	Two from: brush border: no brush border; columnar: angular or circular; nucleus oval: circular; cells side by side: cells scattered; no matrix: cells separated by matrix;	Max 2	Syllabus 4.70 Apple 9700
		(10)	
3 (a)	Three from: Ref to fan; Ref to support; Ref to under water; Ref to acclimatisation; Clip closed; Capillary tube contains water; Tight fit/no leaks;	Max 3	
(b)	Two from: Light; Temperature; Humidity;	Max 2	
(c)	Three from: Time measured; Scale read; Alter fan speed/change fan distance; Replication; Measure leaf area; Ref to reset apparatus qualified; Equilibrate if not given in (b);	Max 3	
(d)	πr² h = 2 marks; Or length X; Area of capillary;	1 1	

(10)

Paper Total 30

June 2003

GCE A LEVEL

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9700/06

BIOLOGY Paper 6 (Options (A2))

		Syllabus P700
Page 1	Mark Scheme	Syllabus
	A/AS LEVEL EXAMINATIONS – JUNE 2003	9700
	Option 1 – Biodiversity	max 2
l (a)	(existence of many) different species; with (a wide range of) different, genes/alleles; (many) different, habitats/ecosystems;	max 2
(b)	has a very high, species diversity/biodiversity;	

Option 1 – Biodiversity

1 (a) (existence of many) different species;		(existence of many) different species;
		with (a wide range of) different, genes/alleles;
		(many) different, habitats/ecosystems;

(b) has a very high, species diversity/biodiversity; is being lost rapidly; may be a carbon sink/ref. to global warming; loss may affect rainfall patterns; loss may affect, soil erosion/flooding;

max 3

more variety of plants in system A than (B, C or) D; (c) (i) ref. to different levels of vegetation in original forest (canopy, understory); therefore greater variety of habitats for birds; greater variety of food sources for birds; ref. pesticides;

max 2

more coffee trees grown in a (unit) area; no competition with other trees; better availability of light; loss of habitats for pests; increased use of fertilisers; increased use of pesticides;

max 2

(iii) populations of pests (on coffee trees) can become very high in D; plentiful food source for them; fewer bird species to predate them/fewer predators;

max 2

(d) nitrogen fixation;

bacteria/Rhizobium/root nodules, provide nitrate/ammonium;

2

(e) pay premium for coffee grown, in system A/in sustainable way; provide, grants/subsidies, to coffee farmers to use system A; encourage/educate/inform, consumers to encourage them to buy coffee grown in system A; find uses for the non-coffee trees in system A;

max 2

2

max 3

[Total 15]

2 (a) Α operculum; В gill bar;

(b) (each gill arch has) many (gill) filaments; each filament has many (gill) lamellae; which provides large surface area; distance between water and blood very small; filaments interlocked/packed closely, to slow water flow;

(c) counter-current;

partial pressure/concentration, of oxygen in blood always lower than in water next to it or always a diffusion gradient between water and blood;

water progressively loses oxygen as it passes through the gills;

			WWW. Pallac
Page 2	Mark Scheme	Syllabus	200
	A/AS LEVEL EXAMINATIONS – JUNE 2003	9700	
	if both flowed in the same direction then blood could or saturated as outflowing water; this arrangement takes more oxygen from the water; increases length/surface area over which exchange or	•	max 3
(d) (i)	volume of, buccal cavity/mouth, increased; by lowering, jaw/floor of mouth:		

volume of, buccal cavity/mouth, increased; (d) (i)

by lowering, jaw/floor of mouth;

while operculum is closed;

this reduces pressure (below that of surrounding water) so water flows

mouth closed and, jaw/floor of mouth, raised;

increases pressure in mouth;

operculum open;

so water pushed out through the gills;

max 4

(ii) as swimming speed increases, rate of pumping increases;

because more oxygen required;

for (aerobic) respiration in (swimming) muscles;

rate of pumping, decreases/remains constant, between 0.4 and 0.6 ms⁻¹;

stops completely at 0.75 ms⁻¹/just before 0.8 ms⁻¹;

because (only) ram ventilation used now/water flowing over gills as a result of swimming;

max 3

[Total 15]

3 (a) (i) named virus + appropriate structure for it;

(core of) RNA/DNA/nucleic acid;

surrounded by, capsid/capsomeres;

(capsid contains) protein;

size between 10nm to 300nm:

detail for named virus:

for example

T₂ – tail fibres/baseplate/other

HIV – reverse transcriptase

herpes - envelope/lipoprotein covering

6

(e.g. bacteriophage, adenovirus) (ii)

- cell recognition/interaction between viral protein and component of host cell membrane;
- virus/nucleic acid/DNA, enters cell; 2
- normal cell activities stopped;
- host cell DNA broken down (by viral enzymes);
- viral DNA used, for transcription/to form mRNA;
- 6 viral proteins made;
- 7 viral DNA replicates;
- new viruses assembled;
- viruses burst from cell/cell lysis;

		1	MM. Papas
Page 3	Mark Scheme	Syllabus	200
-	A/AS LEVEL EXAMINATIONS – JUNE 2003	9700	
	 (e.g. HIV, other retrovirus) 1 cell recognition/interaction between viral protein and of host cell membrane; 2 RNA and reverse transcriptase enter cell; 3 viral DNA made using viral RNA as template; 4 viral DNA incorporated into host DNA; 	component	ambridge.com

- cell recognition/interaction between viral protein and component of host cell membrane;
- 2 RNA and reverse transcriptase enter cell;
- viral DNA made using viral RNA as template;
- viral DNA incorporated into host DNA;
- viral DNA used, for transcription/to form mRNA;
- viral proteins made;
- 7 viral DNA used to produce RNA component of virus;
- new viruses assembled;
- viruses burst from cell/cell lysis;

max 7

(iii) virus acellular/bacterium is a cell;

virus, has no cell surface membrane or may have envelope/bacterium (always) has cell surface membrane;

virus has no cell wall/bacterium does;

virus is (much) smaller than bacterium;

virus has either DNA or RNA/bacterium has both;

viral, DNA/RNA, may be single stranded or is linear/bacterial DNA is double-stranded or circular;

virus has no ribosomes/bacterium does;

virus does not, respire/feed/grow/excrete/have metabolic reactions, (while outside host cell);

virus can only reproduce inside host cell;

max 7

[Total 20]

(b) (i) Absence of features can be implied

chordates have notochord (at some stage), arthropods do not; chordates have, gill/pharyngeal, slits (at some stage), arthropods do

chordates have hollow nerve cord, arthropods have solid nerve cord; chordates have dorsal nerve cord, arthropods have ventral nerve cord;

chordates have closed blood system, arthropods have, open system/haemocoel;

chordates have endoskeleton, arthropods have exoskeleton;

chordates have postanal tail, arthropods do not;

max 6

(ii) three body layers;

ectoderm on outside, mesoderm, endoderm on inside;

coelom is cavity; within mesoderm;

somatic mesoderm on outside and splanchnic mesoderm inside;

coelom is filled with fluid;

coelom is lined by peritoneum (in vertebrates);

mesentery connects, peritoneum/the two layers of mesoderm;

max 7

Page 4 **Mark Scheme Syllabus** A/AS LEVEL EXAMINATIONS - JUNE 2003 9700

(iii) isolates muscles of gut from muscles of body wall; which provides advantages in, locomotion/digestion;

www.PapaCambridge.com provides space for development of organs; example; (not heart or lungs) can provide specialised cavities (such as pleural/pericardial/abdominal); within which fluid composition can be regulated;

(fluid within coelom) can act as a hydrostatic skeleton; by providing incompressible material against which muscles can act; detail of role of coelom in annelid locomotion;

(fluid within it) can be used as a transport system; fluid moved by cilia; provides fluid for excretion (of metabolic waste);

(in e.g. annelids) provides a site for gamete maturation; and for embryo development;

max 7

[Total 20]

		1	MM. Papas
Page 5	Mark Scheme	Syllabus	200
	A/AS LEVEL EXAMINATIONS – JUNE 2003	9700	
	Option 2 – Biotechnology		ambridge.com
1 (a)	use of living organisms/biological agents/animals/plants/c microorganisms;	ells/	Se.CO
	to, produce useful products/produce foods/produce medic produce chemicals/process other materials/treat waste; in fermenter/culture vessel/AW:	cines/	max 2

Option 2 – Biotechnology

to, produce useful products/produce foods/produce medicines/ produce chemicals/process other materials/treat waste; in fermenter/culture vessel/AW;

max 2

- (b) ref. availability of information;
 - ref. public knowledge/understanding/awareness (of information);
 - ref. complexity of issues;
 - ref. actual/potential benefits importance;
 - ref. actual/potential risks;
 - ref. perceptions of benefit/risk;
 - ref. political/commercial pressures;
 - ref. misinformation/AW;

max 4

- (c) (i) initial levels, normal higher than GM/ora;
 - normal has a more rapid rise from 0-4 days/ora;
 - normal reaches much higher level at 4/8 days/ora;
 - normal stays same level from (approx.) 4-8 days/while GM rises slightly;
 - normal drops again after 7/8 days/GM continues to rise after 7/8 days;

max 3

- (ii) idea of start later;
 - idea of happen slower;

2

- not ripe/green when picked;
 - long shelf life/AW;
 - will not over-ripen;
 - do not ripen too quickly;
 - do not become squashy/firmer;
 - AVP;

max 2

- ref. moral principles/personal choice/values of society/AW; ref. to actual/potential/perceived advantages/named advantage;
 - ref. to actual/potantial/perceived risks/hazards/named risk/hazard; AVP.

max 2

[15]

		Syllabus N. A.
Page 6	Mark Scheme	Syllabu
	A/AS LEVEL EXAMINATIONS – JUNE 2003	9700
2 (a) (i)	stimulates immune system; without causing (severe) infection; made from, killed organisms/fragments of organisms; made from, weakened/attenuated organism; with antigens;	max 3
(ii)	attentuated/weakened organism can survive attentuation/st	ill have

(ii) attentuated/weakened organism can survive attentuation/still have ability to cause disease;

or regain pathogenicity/regain ability to cause disease;

very rare/AW;

ref. allergy to vaccine/hypersensitivity;

ref. side effects:

named side effect linked to appropriate vaccine;

chance of serious injury or death;

but chance of dying of disease much greater;

max 4

(iii) virus grown in living cells;

e.g. animal/named animal/hen embryo;

attenuated/weakened;

by, treatment with chemicals/high temperatures/alien conditions for growth/AW;

subcultured many times/AW;

ref. harvest;

ref. purification;

max 4

(b) (i) vaccination/immunisation;

for (almost) all children;

detail (e.g. type of vaccine/introduced before 1980);

OR

better treatment;

details (e.g. isolation/antibiotics);

max 2

(ii) better vaccine/AW;

more people vaccinated/AW;

better antibiotics/treatment:

cheaper antibiotics/treatment;

better public awareness;

AVP.

max 2

[15]

Page 7	Mark Scheme	Syllabus
	A/AS LEVEL EXAMINATIONS – JUNE 2003	9700

3 (a) (i) hydroponics;

plant roots grown in/in contact with water; not usually submerged; will tolerate almost freezing;

aeroponics;

misting plant roots/AW;

ref. cycles/continuous;

run off collected/reused;

ref. nutrient solution;

grown indoors/AW;

use virus tested cuttings AW;

ref. artificial light;

soil based media must be washed off/clean plants;

ref. optimum temperature (15°-18° C);

ref. effects of low temperatures (e.g. flowers liable to split/weaker flower stems/slower growth);

ref. effect of higher temperatures (e.g. denaturation of enzymes); requires Na⁺/Ca²⁺ levels to be high to establish plants;

N supplied as, nitrate/not ammonium salts;

ref. pH around 6/below 7;

ref. low humidity/need for ventilation;

AVP (e.g. CaNO4 requirements decrease during flowering/wider spacing between cuttings reduces disease);

max 8

(ii) (indoor culture so)

not ruined by pests/easier pest control;

no pesticides;

no bad weather/AW;

can be grown in adverse climates/AW;

avoids poor soil/variability of soil;

no weeds/no herbicides needed;

avoids, poor drainage of soils/over watering/AW;

higher oxygen levels around roots/AW;

can be grown out of season/any time of year/when profit is biggest/AW;

grown where land is in short supply/maximises land use/AW;

ref. potential for lower labour costs;

AVP (e.g. can easily supply more carbon dioxide/maximise photosynthesis/optimise conditions);

max 6

www.PapaCambridge.com

Page 8	Mark Scheme	Syllabus
	A/AS LEVEL EXAMINATIONS – JUNE 2003	9700

(iii) Callus culture:

Tus Nava Papa Cambridge Com named specific example of source; aseptic transfer; ref. sterile medium/conditions: with named plant growth regulator; ref. cell division/mitosis; including cells that may not normally divide; each (callus/sample/cell) capable of forming a new plant; genetically identical to/clone of; the source material/each other: section cut: detail (e.g. from suitable part of plant, e.g. hypocotyl/surface sterilised); (callus is) mass of undifferentiated cells/aggregate of cells; solid medium; detail (e.g. agar); use (e.g. propagation); detail (e.g. of cheap/virus free/GM/ cloned plants; AVP: AVP;

Suspension culture:

named specific example of source; aseptic transfer; ref. sterile medium/conditions; with named plant growth regulator; ref. cell division/mitosis; including cells that may not normally divide; each (callus/sample/cell) capable of forming a new plant; genetically identical to/clone of; the source material/each other; separation/dispersal of cells; detail (e.g. gentle shaking/cellulase); (culture of) single cells/small clumps of cells; liquid medium; detail (e.g. medium is entirely synthetic/complex); use (e.g. production); detail (e.g. of metabolites/GM proteins/AW; AVP; AVP;

Protoplast culture:

named specific example of source; aseptic transfer; ref. sterile medium/conditions; with named plant growth regulator; ref. cell division/mitosis; including cells that may not normally divide; each (callus/sample/cell) capable of forming a new plant; genetically identical to/clone of; the source material/each other; cell walls removed;

		Syllabus 9700 PAR
Page 9	Mark Scheme	Syllabus
	A/AS LEVEL EXAMINATIONS – JUNE 2003	9700
	detail (e.g. by enzyme action/cellulases/pectinases); (culture of) single/naked cells; liquid medium detail (e.g. with same water potential as cells); use (e.g. physiology/genetic investigation/making hybrids detail (e.g. ref. specific investigation heterokaryon); AVP; AVP;	ambride

max 6

grapes;

crushed;

[20]

(b) (i) uses Saccharomyces;

cerevisiae/carlsbergensis;

malting barley; under moist conditions/soaked; causes germination of grain; to extract sugars; enzymes/amylases hydrolyse starch; etc. for wine;

dry in kiln;

crush dried grain/milling/grist;

mashing/mix crush grain with water;

allow further breakdown of starch;

add hops;

for flavour;

and sterilise wort;

add yeast;

fermentation;

produce CO₂ and alcohol;

max 8

(ii) new strains of yeast;

by genetic engineering/named process;

improved yield/tolerate higher alcohol content;

top and bottom fermenters;

add amylases/gibberellins;

reduces time to convert starch to sugars;

produce low carbohydrate beers;

unmalted barley and amylases/glucanases/proteases replace malt;

marking points for wine;

max 6

		Syllabus N. A.
Page 10	Mark Scheme	Syllabus
	A/AS LEVEL EXAMINATIONS – JUNE 2003	9700
(iii)	use Fusarium; grown on flour waste/named medium; other nutrient sources, e.g. glucose/minerals/ammonia; continuous aseptic culture; air lift fermenter; heat exchanger; mycelium harvested;	Cambridge.com

centrifuged;

water content reduced;

RNA reduced;

by ribonucleases/heating to 60-70°C;

pressed/processed; flavour added;

colour added;

high protein content;

no cholesterol.

max 6

[20]

			Syllabus N. A.
F	Page 11	Mark Scheme	Syllabus
		A/AS LEVEL EXAMINATIONS – JUNE 2003	9700
		Option 3 – Growth, Development and Repro	eduction Rahmbhidge, Ca
1	(a) (i)	A plasma membrane/cell surface membraneB acrosomeC nucleus	Se. COM
		D mitochondrion half marks rounded up;	2

Option 3 – Growth, Development and Reproduction

(ii) A allows attachment to receptors in zona pellucida; fuses with oocyte membrane;

max 1

B enzyme digests path between follicle cells; enzyme digests zona pellucida;

max 1

(b) (i) fresh/not frozen maximum/peak/80% at 24 hours; at 24h 80% v. 26%;

> frozen highest/c. 58% at 0 hours and falls with time; after 48h fresh still penetrate 40% of oocytes v. frozen only 10%; A any valid figures of comparison

max 2

(ii) need time for capacitation;

removal of, glycoprotein/plasma protein;

accounts for increase in ability to penetrate oocytes between 0 and 24 hours; decrease in ability 24-48 hours from lack of, nutrients/energy; max 3

(iii) non-lethal/slight, damage;

during, freezing/thawing;

alters membrane/speeds up capacitation;

ref. to capacitation having already occurred;

during time delay between ejaculation and freezing;

max 2

(c) increase in, enzyme/nitric oxide synthase, activity in sperm;

on contact with zona pellucida;

enzyme active after sperm penetrates oocyte;

results in increase in nitric oxide concentration in oocyte;

leads to increase in calcium ion concentration in oocyte;

max 4

Total: 15

Any three of the following: 2 (a)

petals, absent/small/inconspicuous/green/dull-coloured;

stamens, flexible filament/hang outside flower/anthers versatile;

stigma, feathery/hangs outside flower;

pollen, much/small/light/smooth (non-sticky);

no credit for structures that are not present such as 'no nectary'

max 3

		7	2
Page 12	Mark Scheme	Syllabus	· A
	A/AS LEVEL EXAMINATIONS – JUNE 2003	9700	80
(b)	(pericarp) becomes, more fleshy/other possible change; growth/swells; colour change; increase in, attractants/sugars/scent;		Max 3
(c)	needs knowledge of: undifferentiated/meristematic, cells in, cutting/other prop stimulated by plant growth substances/plant growth regu auxin/cytokinin; form adventitious roots; ref. tissue culture;	•	max 3
(d)	asexual reproduction; genetically identical/clone; <u>original susceptible</u> so all susceptible to same pathogen; only change via mutation;		max 3
(e)	meiosis fails; in pollen mother cell/embryo sac mother cell; problem, in synapsis/when homologous chromosomes p in prophase 1; crossing over between, three chromosomes/six chromat results in tangle;		max 3
			Total: 15
(a) (i)	absolute growth rate: also called actual growth rate; measure of how <u>rate</u> of growth varies with time; plot of increase in parameter in unit time against time;		

3 (a) (i) absolute growth rate: also called actual growth rate; measure of how <u>rate</u> of growth varies with time; plot of increase in parameter in unit time against time; e.g. kg per year plotted against year/(dm/dt) against (t)/other e.g.; useful for showing, when growth is most rapid/how rate changes with time;

relative growth rate: also called specific growth rate;

takes into account existing growth;

absolute growth rate divided by parameter;

e.g. change in mass in one year divided by mass at beginning of year (dm/dt. 1/m);

shows growth rate relative to size of organism;

max 6

(ii) suitable example; (that will allow for samples over time)

large number of organisms;

in identical conditions;

e.g. of condition (e.g. temperature/water supply/humidity/nutrients);

second e.g. of condition;

samples taken at regular intervals;

randomly;

organism separated from medium;

dried in oven/other suitable conditions;

cooled in desiccator;

repeat to constant mass;

average dry mass;

max 8

		4h
Page 13	Mark Scheme Syllabus	12.0
	A/AS LEVEL EXAMINATIONS – JUNE 2003 9700	2
(iii)	problem of allometry; single dimension may not reflect growth in different dimension; e.g. may be long but thin/other e.g.; problem instars;	www.PapaCambri
	fresh mass/wet mass easily altered; (plants) by water supply/transpiration/environmental conditions; (animals) by, ingestion/egestion/excretion; such gains/losses not true growth;	max 6
		Total: 20
(b) (i)	link between nervous system and endocrine system; stimulates pituitary gland; to release specific hormones; via releasing factors; small peptides; travel in, blood/portal vessels; e.g. GnRF for pituitary to release, FSH/LH; e.g. TRH for pituitary to release TSH; involved in negative feedback; e.g. negative feedback; (oestrogen/progesterone/thyroxine)	max 6
(ii)	anterior lobe; growth hormone (GH)/somatotrophin, from anterior lobe; ref. somatomedin from liver; stimulates protein synthesis; important for growth of, long bones/arms and legs; TSH from anterior lobe; stimulates thyroxine secretion; FSH from anterior pituitary; stimulates development of ovarian follicle; stimulates secretion of oestrogen; ref. secondary sexual charcteristics in female; stimulates spermatogenesis; LH (ICSH) from anterior pituitary; stimulates ovulation; stimulates formation of corpus luteum; stimulates secretion of progesterone; stimulates secretion of testosterone; ref. secondary sexual characteristics in male; FSH and LH control menstrual cycle;	max 8
(iii)	secretes, thyroxine/T ₄ ; secretes, triiodothyronine/T ₃ ; target = respiring cells/increase in respiration rate;	a.c

controls, basal metabolic rate/BMR;

switches on transcription;

stimulates protein synthesis;

stimulates brain development;

stimulates growth;

especially of skeleton;

ref. temperature regulation;

max 6

Total: 20

Page 14	Mark Scheme	Syllabus
	A/AS LEVEL EXAMINATIONS – JUNE 2003	9700

Option 4 – Applications of Genetics

Page 14	Mark Scheme	Syllabus
	A/AS LEVEL EXAMINATIONS – JUNE 2003	9700
	Option 4 – Applications of Genetics	3
(a)	reduces genetic diversity; alleles lost; increases homozygosity/decreases heterozygosity; accumulation of deleterious recessive alleles;	Syllabus 9700 Phaca
(b) (i)	1430-1500;	•
(ii)	neither A nor B can self-pollinate; stigma not receptive when own pollen released; stigma not in appropriate position when own pollen rele neither can be pollinated by another plant of the same p because behaviour synchronous; A pollinates B in morning and B pollinates A in afternoo	ohenotype;
(c) (i)	η = 1;	•
(ii)	probability = > 0.1;	•
(iii)	difference from expectation is not significant; because > than 0.05/1 in 20; ratio of phenotypes is 1 : 1; observed difference due to chance;	max 2
(iv)	unambiguous symbols identified; Aa;	
	aa; [A correct answer based on co – dominant situation]	max 3
		Total: 1
(a) (i)	thick/dehydrated, mucus builds up in lungs; and gut; bacterial infections in lungs; scar/damage, lungs; mucus blocks secretion of digestive enzymes (from par impaired digestion; infertility;	ncreas)/ max 3
(ii)	recessive allele; autosomal/chromosome 7; homozygote recessive = sufferer; heterozygote = carrier; correct statement <u>re</u> inheritance; [e.g. 1 in 4 chance from 2 carrier parents]	max 3
(iii)	large number of different mutations; each test specific; DNA has different, code/base sequence; probe binds to specific/complementary sequence;	may (

probe binds to specific/complementary sequence;

max 2

	my	
Page 15	Mark Scheme Syllabus	8
	A/AS LEVEL EXAMINATIONS – JUNE 2003 9700	Pap
(b) (i)	study of ion transport through cell membrane; if no CFTR/protein (produced and put into cell membrane) then no tran	AdhaCanno
(ii)	inability to transport HCO ₃ ; change in transport ratio; transport ratio < 0.1 : 1.0; increase in acidity/decrease in pH; ref. effect on mucus;	max 3
(iii)	poor digestion of protein; lipid; starch; malnutrition; ref. to effect on production of, insulin/glucagon;	max 2 Total: 15
(a) (i)	to alter phenotype of domesticated animals or plants; trait of, use/value, to man.	
	Allow following examples of use: quantitative agricultural plant improvement; quantitative agricultural animal improvement; qualitative agricultural improvement (plant or animal); ornamental example in plants; ornamental example in animals; other example; (i.e. sporting, etc.)	max 6
(ii)	plant without resistance crossed with resistant plant; offspring 1 seeds sown; offspring 1 plants challenged by disease/AW; resistant offspring 1 interbred; selection and interbreeding continued for many generations; resistant offspring 1 backcrossed to parent; for background genes; for traits other than resistance; selection and backcrossing continued for many generations; resistant parent, same species/primary (or secondary) gene pool; resistant parent, different species/tertiary gene pool; practical detail 1; practical detail 2; [male sterility/removal of anthers/bagging/pollination] gene bank/landrace/wild species;	max 8
(iii)	orthodox seeds; seeds dehydrated; stored at -20°C;	

3

germination tests every 5 years; recommended threshold value = 85% germination; then seeds grown and fresh seed collected;

storage life doubled by 5°C (A approx.) reduction in temperature; storage life doubled by 2% (A approx.) reduction in humidity;

recalcitrant seeds cannot be dried and frozen;

max 6

Total: 20

Page 16	Mark Scheme	Syllabus
	A/AS LEVEL EXAMINATIONS – JUNE 2003	9700

(b) (i) linkage

2 or more genes on same chromosome;

do not assort independently in meiosis;

inherited together;

number of linkage groups = number of pairs of homologous

chromosomes/haploid number of chromosomes;

genes closer together less likely to be separated by crossing-over;

crossing-over

prophase meiosis I;

during synapsis;

chromatids of a bivalent break:

rejoin with non-sister chromatid;

exchange between paternal and maternal chromatids;

of <u>alleles</u>:

diagram;

ref. chiasma;

ref. cross over value; [max 5 on c-o]

genes closer together less likely to be separated by crossing over; max 8

(ii) six loci; [A 4 loci]

A, B, C, DP, DQ, DR; [A A, B, C, D]

tightly linked/rarely separated by crossing over;

inherited as a unit;

haplotype;

chromosome 6;

very large number of alleles;

hence very many different combinations in the population;

child receives one haplotype from mother and one from father;

probability of two siblings sharing one haplotype = 0.5;

probability of two siblings with identical haplotypes = 0.25;

(iii) HLA loci code for (glyco)proteins;

at cell surface/in plasma membrane;

recognition markers/self or not-self markers;

act as antigens;

transplant from unmatched donor rejected;

ref. immune system/immune reaction;

detail of immune system; [antibodies/T cells]

some HLA antigens induce a greater reaction than others;

ref. immunosuppression;

ref. ABO groups;

red cell antigens and plasma antibodies;

detail ABO mismatch;

ref. 'universal donor'/'universal recipient';

max 6

max 6

Total: 20

www.PapaCambridge.com