MARK SCHEME for the October/November 2009 question paper for the guidance of teachers

9700 BIOLOGY
 9700/42
 Paper 42 (Theory 2), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus
	GCE A/AS LEVEL - October/November 2009	9700

Section A

Page 3	Mark Scheme: Teachers' version	Syllabus
	GCE A/AS LEVEL - October/November 2009	9700

3	(a)	(i)	condensation ;	
		(ii)	1. autolysins ; 2. make holes in cell walls ; 3. in, growing / developing, bacteria ; 4. (antibiotic), inhibits / acts on, (another) enzyme ; 5. so peptidoglycan chains cannot link up / stops cross-links forming ; 6. cell wall becomes weaker / AW ; 7. turgor of cell not resisted (by cell wall) / AW ; 8. cell bursts ;	[4 max]
		(iii)	(glycoprotein) peptidase ; \quad R other peptidase	[1]
	(b)		viruses have no cell wall ;	[1]
	(c)	1 2	assume gram+ unless otherwise stated (gram+) penicillin can reach, cell wall / peptidoglycan, directly /AW / (gram-) ora ; (gram-) outer membrane provides protection (from penicillin) / (gram+) ora ; (gram+) more \% peptidoglycan in wall (so greater effect from penicillin) / (gram-) ora ;	[2 max]

Page 4	Mark Scheme: Teachers' version	Syllabus
	GCE A/AS LEVEL - October/November 2009	9700

	(d)	1 2 3 4 5 6 7 8 9 10	accept antibiotic for penicillin and bacteria for S. pneumoniae throughout increase in resistance (throughout time period) ; paired figs + units ; overuse / misuse, of penicillin ; some S. pneumoniae survive ; mutation (in S. pneumoniae) ; resistance, gene / allele ; resistance passed to other bacteria ; e.g. plasmid transfer resistant strain, multiplies ; idea of many produced beta - lactamase produced; breaks down penicillin ; point 7 accept vertical or horizontal transfer point 8 accept vertical transfer only	[5 max]
				[Total: 14]
4	(a)	(i)	1. yield for sorghum is greater than yield for wheat (in any soil type); 2. yield for wheat is better in HWC soil / little difference in yield for sorgham; 3. paired figs ; only award if linked correctly to mp 1 or mp2 4. sorghum is adapted to live in arid environment / AW ; 5. and 6. any two of the following ;;	

Page 5	Mark Scheme: Teachers' version	Syllabus
	GCE A/AS LEVEL - October/November 2009	9700

		(ii)	number of seeds sown ; density of seeds sown / area of plot; minerals / fertilisers ; wind / shelter ; soil pH ;	[2 max]
	(b)		1. ref. bundle sheath cells; 2. light independent stage occurs / RuBP found (in bundle sheath cells) ; 3. RuBP / rubisco, kept away from, air / oxygen ; 4. by mesophyll cells ; 5. limits uptake of O_{2} / maintains high CO_{2} concentration (in bundle sheath cells) ; 6. enzymes / PEP carboxylase, have high optimum temperature ; 7. approx $45^{\circ} \mathrm{C}$; 8. not denatured ;	[4 max]
				[Total: 10]
5	(a)		A - Leydig cell / interstitial cell ; B - (wall of) seminiferous tubule ;	[2]
	(b)	(i)	1;	[1]
		(ii)	mark first two answers E; A secondary spermatocyte F ; A spermatid spermatozoan ;	[2 max]
		(iii)	cells grow in size / cells grow larger ;	[1]
	(c)	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	ATP production / provides energy; \mathbf{R} produces energy (for) movement of flagellum ; $\quad \mathbf{R}$ tail (for) production of acrosomal enzymes ;	[2 max]

Page 6	Mark Scheme: Teachers' version	Syllabus
	GCE A/AS LEVEL - October/November 2009	9700

	(d)	(i)	1. infectious disease causes damage ; A mumps / Chlamydia / STDs 2. lower sperm count / absence of sperm ; 3. damaged / abnormal / immobile / lazy , sperm ; 4. blocked sperm ducts / lack of seminal fluid ; 5. named genetic condition; e.g. CF 6. autoimmune reaction to sperm ; 7. reduced testosterone ; 8. effect of chemical damage ; e.g. chemotherapy / hormones in drinking water	[3 max]
		(ii)	(fertilisation of) oocyte by sperm ; in glass dish ; A appropriate glassware \mathbf{R} test tube AVP ; e.g. sperm injected into oocyte	[2 max]
		(iii)	1. ovulation less likely ; 2. (older) oocytes less likely to be fertilised / oocytes less viable ; 3. implantation less likely (in uterus of older woman) ; 4. miscarriage rate increases (with age) ; 5. (as) lower concentration of hormones / unbalanced hormones (in older woman) / start of menopause ; 6. (as) genetic defects / mutations, increase (with age) ;	[3 max]
				[Total: 16]
6	(a)	(i)	ignore refs to function islets of Langerhans ; scattered throughout pancreas / AW ; alpha and beta cells ; blood supply (to carry hormones away) ;	[3 max]
		(ii)	globular protein ;	[1]

Page 7	Mark Scheme: Teachers' version	Syllabus
	GCE A/AS LEVEL - October/November 2009	9700

	(b)	1 2 3 4 5 6 7	it is identical to human insulin / fits membrane receptor on (target) cells ; (more) rapid response ; no / fewer, rejection problems / side effects / allergic reactions ; ref. to ethical / moral / religious, issues ; cheaper to produce in large volume / unlimited availability ; \mathbf{R} cheap to produce less risk of, transmitting disease / infection ; good for people who have developed tolerance to animal insulin ;	[3 max]
				[Total: 7]
7	(a)		parents, carriers / heterozygous; child homozygous recessive ; $1 / 4 / 0.25 / 25 \%$, chance ; mutation ;	[3 max]
	(b)	(i)	gene technology / genetic engineering / description ;	[1]
		(ii)	glucagon ;	[1]
		(iii)	Iow blood glucose concentration / during or after exercise ; R sugar	[1]
	(c)		foreign / non-self / cell recognition ; stimulates immune response / AW ;	[1 max]
	(d)		parental genotypes $\mathbf{L}^{\mathrm{M}} \mathbf{L}^{\mathrm{N}}$ x $\mathbf{L}^{\mathrm{M} \mathbf{L}^{\mathrm{N}}}$ gametes \mathbf{L}^{M} or \mathbf{L}^{N} \mathbf{L}^{M} or \mathbf{L}^{N};	[3]
			penalise once for omission of L	

Page 8	Mark Scheme: Teachers' version	Syllabus
	GCE A/AS LEVEL - October/November 2009	9700

	(e)		Canadian Inuit, allele frequencies / $\mathbf{L}^{\mathrm{M}} \mathbf{L}^{\mathrm{N}}$ ratio, different from others ; high frequency of $\mathbf{L}^{\mathbf{M}}$ / low frequency of $\mathbf{L}^{\mathbf{N}}$, compared to other populations ; R just highest $\mathbf{L}^{\text {M }}$ / lowest \mathbf{L}^{N} less outbreeding / more inbreeding; AVP; e.g. L^{M} has selective advantage in Inuit environment	[3 max]
				[Total: 13]
8	(a)	1 2 3 4 5 6 7	stomata ; air spaces (between cells) ; thin cell walls ; moist internal walls ; thin leaf; cylindrical palisade cells ; large surface area of, palisade / mesophyll, cells ;	[4 max]
	(b)		$0.0025 / 2.5 \times 10^{-3} ; \quad$ A 0.003 only if 0.0025 in answer	[1]
	©	1 2 3 4	photosynthesis takes place ; oxygen is produced ; collects, inside disc / on surface of disc ; disc, less dense / more buoyant ;	[3 max]
	(d)		rate of photosynthesis increases as light intensity increases; paired data quotes from columns 2 and 4 ;	[2]
	(e)	1 2 3	light intensity no longer limiting; carbon dioxide, concentration / rate of diffusion, now limiting ; temperature, too high / denatures enzymes;	[2 max]
				[Total: 12]

Page 9	Mark Scheme: Teachers' version	Syllabus
	GCE A/AS LEVEL - October/November 2009	9700

Section B: only one question to be answered.

9	(a)	1 2 3 4 5 4 6 7 8 9 10 11 12 13	acetyl CoA combines with oxaloacetate ; to form citrate ; 4C to 6C ; decarboxylation / CO_{2} released ; dehydrogenation / oxidation / release of hydrogen ; reduced NAD produced / NAD accepts hydrogen ; reduced FAD produced / FAD accepts hydrogen ; ATP produced ; substrate level phosphorylation ; series of, steps / intermediates ; A many named steps off a diagram enzyme catalysed reactions ; oxaloacaetate regenerated ; occurs in mitochondrial matrix ;	[9 max]
			accept diagram	
	(b)	14 15 16 17 18 19 20 21 22	coenzyme ; for dehydrogenase ; reduced ; carries, electrons and protons / hydrogen / NAD from Krebs cycle ; and glycolysis ; to ETC / electron carrier chain / oxidation ; reoxidised / regenerated hydrogen removed ; ATP produced ;	[6 max]
				[Total: 15]

Page 10	Mark Scheme: Teachers' version	Syllabus
GCE A/AS LEVEL - October/November 2009		9700

10	(a)	1 2 3 3 4 5 6 7 8 9 10 11 12 13 14	action potential / depolarisation, reaches presynaptic membrane ; $\left(\mathrm{Ca}^{2+}\right)$ channels open in presynaptic membrane / presynaptic membrane becomes more permeable to $\left(\mathrm{Ca}^{2+}\right) ; \mathbf{R}$ calcium / Ca / Ca^{+} Ca^{2+} (flood) into presynaptic, neurone / knob; R membrane (this causes) vesicles of, acetylcholine / ACh ; (to) move towards presynaptic membrane / (to) fuse with presynaptic membrane; ACh released into synaptic cleft / exocytosis of ACh ; ACh diffuses across (cleft) ; ACh binds to receptor (proteins) / AW ; on postsynaptic membrane ; proteins change shape / channels open ; sodium ions (rush) into postsynaptic neurone ; R membrane postsynaptic membrane depolarised; action potential / nerve impulse ; action of acetylcholinesterase ;	[9 max]
	(b)	15 16 17 18 19 20 21 22 23 24	ensure one-way transmission; receptor (proteins) only in postsynaptic, membrane / neurone ; ora vesicles only in presynaptic neurone ; ora adaptation / ACh amount reduces due to overuse of synapse ; wide range of responses ; due to interconnection of many nerve pathways ; inhibitory synapses affect other synapses ; involved in memory / learning ; due to new synapses being formed; summation / discrimination ;	[6 max]
				[Total: 15]

