WWW. Papa

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2010 question paper for the guidance of teachers

9700 BIOLOGY

9700/43

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Do	~ · · ·	Mark Sahama, Tarahara' yaraian	Syllabus Papa er 9700 Papa Papa Papa Papa Papa Papa Papa Pa
	Ра	ge 2	Mark Scheme: Teachers' version GCE AS/A LEVEL – May/June 2010	Syllabus Popularier 9700
1	(a)	1	more nests in, areas of low salinity/less salty areas; ora	Carry
		2	comment about result for salinity 16-20 not following trend;	Tide
		3	2 paired figs with units; linked to 1	[3]
	(b)	(i)	(<u>31 – 8</u>) (× 100)	
			287.5/288 ;;	
			allow one mark for suitable working if incorrect answer	[2]
		(ii)	any two from	
			1 (ensure) low salinity or more freshwater;	
			2 nest sites protected;	
			3 education/ecotourism;	
			4 assisted breeding;	
			5 ban on hunting ;	
			6 preventing pollution;	[2 max]
				[Total: 7]
2	(a)	1	receptor or binding site not, complementary/specific, to FSH	;
		2	FSH has <u>shorter</u> β <u>chain</u> than LH ; ora	
		3	FSH has different, primary structure/sequence of amino acid	ds;
		4	FSH has different, tertiary structure/3D shape;	[3 max]
	(b)	(i)	follicle (cells); A granulosa (cells)	[1]
		(ii)	corpus luteal (cells); A granulosa (cells)	[1]
	(c)	1	(binding to a receptor), acts as a signal to the cells/stimulate	es cells ;
		2	to, start/increase, synthesis of hormone; A cells start to div	ride
		3	oestrogen secreted; A mature follicle f	ormed (oestrogen),
		4	stimulates thickening of endometrium/inhibits FSH (production	on); [3 max]
				[Total: 8]

				yllabus 9700 Aho	
Page 3			Mark Scheme: Teachers' version S GCE AS/A LEVEL – May/June 2010	yllabus 700	er
(a)	(a) 1 peni		cillin inhibits enzyme ; ignore name of enzyme	3700	Carr
(-,	2	-	tidoglycan chains cannot link up/stops cross-links forming;		Origo
	3		wall becomes weaker/AW;		00
	4		or of cell not resisted (by cell wall)/AW;		•
	5		wall, bursts ;		[3 max]
	J	CCII/	wall, buists ,		[o max]
(b)	(i)		as, an outer membrane/channel proteins; as thinner (peptidoglycan) wall; accept ora for A		[2]
	(ii)	1	penicillin V can reach the, wall/(cell surface) membrane, of	A; ora	
		2	outer membrane of B stops penicillin V getting through;	ora	
		3	penicillin V cannot get through pores of outer membrane o	f B ;	[2 max]
	(iii)		penetrate outer membrane ; ugh pores/directly through as non-polar ;		[2]
(c)	bate	ch cu	lture		
	1	set u	up and allowed to proceed ;		
	2	nutri	ients not added or products removed, (during fermentation)	;	
	3	air a	llowed in/waste gas allowed out ;		
	4	at er	nd of each process, product harvested/fermenter cleaned o	out; max 2	
	con	tinuo	us culture		
	5	nutri	ients added (all the time);		
	6	prod	lucts removed (all the time);		
	7	no d	lown time/AW;	max 2	[3 max]
(d)	1	•	nicillium/fungus), does not make penicillin all the time/penices of growth;	illin is made in the	ater
	2	whe	n beginning to run out of nutrients;		
	3	(pen	nicillin) is a <u>secondary</u> metabolite ;		
	4	cont	inuous culture has no yield of penicillin ;		
	5	cont	inuous culture, never reaches stationary phase of growth/alv	vays exponential ς	growth ; [3 max]

3

[Total: 15]

Do	~ 4		Mark Scheme: Teachers' version Syllabus er					
Page 4			GCE AS/A LEVEL – May/June 2010	9700				
(a)	a) 1 can		be grown in many different environments/AW;	18	er Cambridge.			
	2	(gra	ins) contain variety of nutrients; A list of 3+ nutrients	Ì	Tide			
	3	deta	ail of nutrient content ; e.g. high in calcium/vitamin B/pro	otein				
	4	(gra	ins) have <u>high</u> , energy/fibre, content;					
	5	(gra	ins) store well;		[3 max]			
(b)	(i)	endo	osperm;		[1]			
	(ii)	1	both rise and then fall;					
		2	sorghum (enzyme) has higher activity (at all temperatu	ıres);				
		3	sorghum (enzyme) has higher maximum activity;					
		4	sorghum (enzyme) has higher optimum temperature;	A 70° and 60°				
		5	comparative figures to illustrate points 2 or 3;		[3 max]			
	(iii)	1	(rice) tertiary structure/active site, of amylase is altered	d more by high tempera	ature ;			
		2	(therefore) fewer ES/enzyme-substrate complexes form	med/AW;				
		3	high temperatures affect H bonds (more than other bo	nds);				
		4	amylase in rice may have more H bonds; ora					
		5	correct ref. to other named bond;		[3 max]			
(c)	(i)	1	higher CO ₂ uptake at higher light intensity; ora					
		2	comparative figures; using columns 1 and 2					
		3	CO ₂ used in, Calvin cycle/light independent reaction;					
		4	photophosphorylation/light dependent stage provides,	ATP/reduced NADP;				
		5	for use in, Calvin cycle/light independent reaction;					
		6	light is a limiting factor;		[3 max]			
	(ii)	1	survive better at low light intensities;					
		2	comparative figures; using columns 1 and 6		[2]			

[Total: 15]

	Page 5		Mark Scheme: Teachers'	version	Syllabus	er
			GCE AS/A LEVEL – May/Ju	ine 2010	9700	Do
5	(a)		ergence values less for <i>persimilis</i> than for persimilis than persimilis that persimilis the persimilis than persimilis than persimilis that persimilis the persimilis the persimilis that persimilis the persimilis the persimilis the persimilis that persimilis the	oseudoobscura (at a	all DNA regions)	Candida
	(b)	1	some regions of DNA more prone to muta	ation than others;		COM
		2	mutation in some regions likely to be fata	l (so not seen in pop	oulations);	

- 5 (a) divergence values less for *persimilis* than for *pseudoobscura* (at all DNA regions) use of figures;
 - **(b)** 1 some regions of DNA more prone to mutation than others;
 - 2 mutation in some regions likely to be fatal (so not seen in populations);
 - 3 there tends to be less divergence if DNA is part of an important gene/ora;
 - 4 detail; e.g. causes change in essential protein

[2 max]

- (c) 1 allopatric speciation;
 - 2 geographical/physical, barrier;
 - 3 no, breeding/gene flow, between populations;
 - 4 mutations occur;
 - 5 different selection pressures/different (environmental) conditions;
 - genetic change; e.g. different alleles selected for/change in allele frequency/change in 6 gene pool/advantageous alleles passed on;
 - 7 genetic drift;
 - 8 (ultimately) cannot interbreed/reproductively isolated;

[4 max]

[Total: 8]

Page 6	Mark Scheme: Teachers' version	Syllabus	er
	GCE AS/A LEVEL – May/June 2010	9700	123-

- 6 (a) 1 allele/gene, found on X chromosome;
 - 2 females have two copies of, allele/gene;
 - 3 males have only one copy of, allele/gene;

2 max

(b) key to symbols

recessive allele X^a (= allele for CI)

dominant allele X^A (= allele for normal iris);

cross 1

parental phenotypes male with CI/cleft iris and normal female

gametes X^a or Y all X^A;

offspring genotypes X^AX^a X^AY ;

offspring phenotypes normal female normal male;

or

cross 2

parental phenotypes male with CI/cleft iris and normal female ;

gametes X^a or Y X^A or X^a;

offspring genotypes X^AX^a X^AY X^aX^a X^aY ;

offspring phenotypes normal normal cleft iris/CI cleft iris/CI female male female male ; [5]

offspring phenotypes must be linked to genotypes

(c) 1 in 4/25%/0.25; **R** ratios

[Total: 8]

[1]

	Page 7	Mark Scheme: Teachers' version	Syllabus
		GCE AS/A LEVEL – May/June 2010	9700
7		noval of, carbon dioxide/carboxyl group; noval of hydrogen;	Cambridge
	(ii) Pa	nd Q ;	Se.com
	(b) (i) 3;		[1]

- 7 (i) removal of, carbon dioxide/carboxyl group; removal of hydrogen;
 - (ii) P and Q;
 - **(b) (i)** 3;
 - (ii) 1 inner mitochondrial membrane/cristae;
 - 2 dehydrogenase enzymes;
 - 3 release hydrogen;
 - hydrogen splits into protons and electrons; 4
 - 5 electrons flow down, ETC/Electron Transfer Chain/AW;
 - 6 energy released;
 - 7 protons pumped across (inner membrane);
 - 8 into intermembrane space;
 - 9 proton gradient;
 - 10 protons pass through, ATP synthase/stalked particles;
 - 11 ATP formed; linked to 10
 - 12 oxygen (final), hydrogen/proton and electron, acceptor; max 4 [5 max]
 - (c) 1 pyruvate converted to ethanal;
 - 2 ethanal reduced;
 - 3 by reduced NAD;
 - 4 NAD, oxidised/regenerated;
 - 5 allows glycolysis to continue;
 - 6 ethanal dehydrogenase;
 - 7 ethanol formed;
 - [4 max] 8 prevents H⁺ from lowering pH;

	Dogo 9			Mark Cahama, Tasaharai waraisa	Cullaba	4.0	
	Page 8		i	Mark Scheme: Teachers' version GCE AS/A LEVEL – May/June 2010	Syllabus 9700	dy er	
					3700	S.	
	(d)	1	no,	decarboxylation/carbon dioxide removed; A ora		My.	
		2	sin	gle step;		M. Papa Cambridge	
		3	lac	tate dehydrogenase ;			
		4	rev	ersible;		[3 max]	
						[Total: 16]	
8	(a)	(i)	1	change in, genetic material/DNA, (in cell);			
			2	(therefore) change product of cell;			
			3	during protein synthesis;		[2 max]	
		(ii)	1	identification of transformed, cells/organisms;			
			2	avoid use of antibiotics;			
			3	easy to detect ;			
			4	no known ill effect on GM organism;		[2 max]	
	(b)	(i)	1	reduces deficiency disease/AW;			
			2	better quality food;			
			3	assistance to developing nations/AW;			
			4	cheap seed; e.g. for golden rice		[2 max]	
		(ii)	1	high cost of GM seed;			
			2	too much power held by multinational companies;			
			3	change to ecosystem; e.g. hybridisation			
			4	GM crops may be difficult to sell;			
			5	GM plant varieties may be genetically unstable;			
			6	no long term studies done on effects on human health	;		
			7	reduction in biodiversity/outcompetes natural variety or	species;	[2 max]	

[Total: 8]

				<u>, </u>	22
	Pa	ge 9)	Mark Scheme: Teachers' version GCE AS/A LEVEL – May/June 2010	Syllabus er 9700
9	(a)	1	arra	nged in light harvesting, clusters/system;	Syllabus And Parcambanda Parca
		2	prim	nary pigments/chlorophyll a ;	Tidge
		3	at re	eaction centre;	
		4	P70	0/P1, absorbs at 700(nm) ;	
		5	P68	0/P11, absorbs at 680(nm) ;	
		6		essory pigments/chlorophyll b/carotenoids, surround, pr tre/ chlorophyll a ;	rimary pigment/reaction
		7	pass	s <u>energy</u> to, primary pigment/reaction centre/chlorophyl	ll a ;
		8	P70	0 / PI, involved in cyclic photophosphorylation;	
		9	(ligh	nt absorbed results in) electron excited/AW;	
		10	emit	tted from, chlorophyll/photosystem;	
		11	flow	s along, chain of electron carriers/ETC;	
		12	ATP	P synthesis ;	
		13	elec	etron returns to, P700/P1 ;	[8 max]
	(b)	14	phot	tolysis (of water) ;	
		15	relea	ases H⁺ ; <i>R H/hydrogen atoms</i>	
		16	by, F	P680/PII ;	
		17	e⁻ re	eleased;	
		18	by, F	P700/PI;	
		19	both	combine with NADP;	
		(red	duced	d NADP)	
		20	redu	uces, GP; A PGA	
		21	to TI	P; A PGAL / GALP	

22 ATP used;

23 NADP, regenerated/oxidised;

[Total: 15]

[7 max]

	Page 1	ge 10 Mark Scheme: Teachers' version		Syllabus
			GCE AS/A LEVEL – May/June 2010	9700
10	(a) 1	nucl	eus in cell body;	Cambria
	2	(long	g) dendron ; R plural	Tage
	3	(sho	orter) axon ;	COM
	4	man	y mitochondria (in cell body) ;	

- **10** (a) 1 nucleus in cell body;
 - 2 (long) dendron; R plural
 - 3 (shorter) axon;
 - 4 many mitochondria (in cell body);
 - 5 many RER/nissl's granules, (in cell body);
 - 6 synaptic knobs;
 - detail of synaptic knob; 7
 - 8 (terminal) dendrites;
 - 9 Schwann cells;
 - 10 detail of myelin sheath;
 - 11 nodes of Ranvier;

accept points on labelled diagram

[7 max]

- (b) 12 Na⁺ channels open; A sodium channels
 - 13 Na⁺ enter cell; R enter membrane
 - 14 inside becomes, less negative/positive/+40mV or membrane depolarised;
 - 15 Na⁺ channels close; A sodium channels
 - 16 K⁺ channels open; A potassium channels
 - 17 K⁺ move out (of cell); **R** of membrane
 - 18 inside becomes negative **or** membrane repolarised; **A** negative figure max 5

local circuits/description;

- (myelin sheath/Schwann cells) insulate axon/does not allow movement of ions;
- action potential/depolarisation, only at nodes (of Ranvier)/gaps;
- saltatory conduction/AW;
- one-way transmission;
- 24 AVP; e.g. hyperpolarisation/refractory period

[8 max]

[Total: 15]