in a complete

UNIT 2 Molecules and Membranes

Timing This unit comprises approximately 20% of the learning material in AS Biology, and about 10% of the learning material in a complete Biology A Level learning programme.

Recommended Prior Knowledge Students will need some background knowledge in chemistry before embarking on this Unit. They should understand the terms 'atom', 'molecule' 'electron' and 'ion'. They should also have a basic understanding of covalent and ionic bonding, and of molecular and structural formulae. They should be able to write and understand simple chemical equations. Some knowledge of energy changes (potential energy and bond energy) would be helpful. They should understand the kinetic theory, and be able to use it to explain diffusion in solutions.

Context This Unit could be studied either before or after Unit 1, Cells and Cell Division. It provides essential material that students will constantly refer to when studying all future Units in their AS course. An understanding of the structure, roles and behaviour of biological molecules is fundamental to an understanding of all physiological processes, as well as genetics and some aspects of ecology.

Outline The Unit begins with the properties and roles of water in relation to living organisms; this introduces the concepts of hydrogen bonding and solubility, which will be needed in order to understand the properties of biological molecules. Three of the main groups of biological molecules - carbohydrates, fats and proteins - are studied, with an emphasis on relating their molecular structures to their properties and functions in living organisms. This leads on to an understanding of the structure and functions of biological membranes.

There are good opportunities within this Unit for students to develop their practical skills relating to Assessment Objectives in Group C (Experimental skills and investigations) including the design and evaluation of their own investigations. Try to ensure that each student works alone and under time pressure on some occasions, as this will help to prepare for the practical examination(s).

Note: the structure and function of polynucleotides (DNA and RNA) is covered in a later Unit.

Reinforcement and formative assessment It is recommended that, towards the end of the time allocated to the unit, time be taken to permit reinforcement of the learning that has occurred. This might take the form of structured revision and questions, perhaps making use of online question banks such as http://www.learncie.org.uk/ or http://exam.net/public/misc/pub_home.asp.

Formative assessment could take the form of student self-marked minitests, taking just 10 or 15 minutes for students to do and then mark for themselves, perhaps using questions from the banks above – discussing the correct answers as a whole class. At the end of the unit, there should be a much larger formative assessment test, using appropriate past-examination and similar style questions, taking a lesson to do, and a lesson to provide feedback after marking by the teacher.

			WWW. Papac	
Learning Outcomes	Suggested Teaching Activities	Online Resources	Other resources	Bridge
	Before beginning this Unit, it is	http://old.jccc.net/~pdecell	Advanced Biology, Jone	On.
	recommended that you check the	/chemistry/chemtext.html	and Jones, CUP, has an	8
	background knowledge of students, as	is an excellent online basic	Appendix covering the	o.G
	described in 'Recommended Prior	chemistry tutorial designed	basic chemistry required	COM
	Knowledge' at the beginning of this	for biologists	for this Unit.	
	Unit.	_		

MMM. PARA	
resources	ON.
perties of water	Or.
scribed and	8
ad in Dialogical	-60

	Learning Outcomes	Suggested Teaching Activities	Online Resources	Other resources The properties of water
B(i)	describe and explain the roles of	The way in which you deal with this	http://people.pwf.cam.ac.u	The properties of water
	water in living organisms and as an	topic should be tailored to the	k/mjas2/Documents/BYB_	fully described and
	environment for organisms	background of your students. Those	Water.pdf has information	explained in <i>Biological</i>
		with a strong chemistry background are	about the range of	Sciences, ed Soper, CUP
	Learning Activities	likely to have little trouble with	functions of water in a text	and in Advanced Biology,
	Learning Activities - question and answer session / whole class discussion - looking up key terms in the index of a variety of Biology books - brief written and diagrammatic explanation of polar/non-polar and hydrogen bonding and its importance		I — — — — — — — — — — — — — — — — — — —	_
		properties should also be discussed -		
		this will help to explain the solubility or		
		otherwise of the biological molecules to		
		be dealt with later in this Unit. Each of		
		these properties can be related to the		
		roles of water within living organisms		
		and as an environment for them.		

		WWW. Papac
	A discussion on hydrogen bonding could be extended to highlight its important in protein structure and DNA.	Se Cambridge Co.
	Emphasise role of water as important solvent in biological systems - introduce concept of 'polar' and 'non-polar' here.	

MMM. Papa
Other resources
Molecular models are
available from suppliers,
such as Philip Harris

	Learning Outcomes	Suggested Teaching Activities	Online Resources	Other resources Molecular models are
B(b)	describe the ring forms of alpha and	All students will be familiar with the	It is possible to view	
(c)	beta glucose	term 'carbohydrate', but are likely to	models of molecules on	available from suppliers,
	describe the formation and breakage	know little about their molecular	line at Botany on-line:	such as Philip Harris
	of a glycosidic bond	structure. Glucose is used here as an	http://www.biologie.uni-	
		example of a monosaccharide; an	hamburg.de/b-	Biology, Jones, Fosbery,
	Learning activities	understanding of its alpha and beta	online/e00/contents.htm	Taylor and Gregory, like
	 making and using molecular 	forms will be needed in order to		other texts, uses diagrams
	models (there are some	understand polysaccharide properties		to illustrate these
	inexpensive drinking straw based	later.		structures and processes
	models as well as plastic sphere /	An explanation of how a glycosidic		
	bond models)	bond forms and can be broken can lead		
	 numbering the atoms on existing 	to an understanding of the terms		
	drawings of glucose molecules,	'monosaccharide' and 'disaccharide' -		
	and completing incomplete	note that these terms are not required		
	diagrams by adding OH and H	by the syllabus, but may be useful to		
	groups	candidates nevertheless. This also		
	 practising drawing α and β 	introduces the terms 'condensation' and		
	glucose with all the atoms, and	'hydrolysis' for the first time.		
	omitting the carbon atoms, as	If you have access to molecular		
	well as diagrams summarising	modelling materials, students may		
	glycosidic bond formation (e.g.	enjoy and learn from making models of		
	to form maltose)	glucose molecules and their		
	to form manose)	combination to form maltose.		

Spac.	
er resource 💜	3.
! Advanced	Dr.
King and Reiss,	8
these techniques	20

	Learning Outcomes	Suggested Teaching Activities	Online Resources	Other resource Practical Advanced
B(a)	carry out tests for reducing and non-	I would suggest carrying out these tests	http://jchemed.chem.wisc.	Practical Advanced
	reducing sugars (including semi-	on solutions of different sugars first to	edu/JCESoft/CCA/CCA5/	<i>Biology</i> , King and Reiss,
	quantitative use of the Benedict's	identify reducing and non-reducing	MAIN/10RGANIC/ORG1	describes these techniques
	test)	sugars. I would not call them 'food	8/TRAM18/B/MENU.HT	(though not the semi-
		tests'.	<u>M</u>	quantitative tests).
	Learning activities	Students could first carry out the	has illustrations of simple	
	– use Benedict's test on water, pure	Benedict's test for reducing sugars on a	benedict's test, including	Comprehensive Practical
	glucose, fructose, maltose,	range of food substances; this will be	negative test for sucrose	<i>Biology</i> , includes a
	lactose, sucrose, protein	revision for most of them. You could	before hydrolysis.	protocol that describes a
	solutions, starch suspension, and	then explain to them that this test does		semi-quantitative test.
	vegetable oil	not work for sucrose (the only non-	http://www.mrothery.co.u	See also Biological
	use Benedict's test on a range of	reducing sugar they will come across)	k/module1/Mod%201%20t	Science, ed Soper, pub.
	natural biological materials (e.g.	and ask them to suggest how they	echniques.htm	CUP.
	fruits, tubers)	might be able to adapt the test to test	gives a straightforward	
		for sucrose - encourage them to draw	description of benedict's	Advanced Biology
	- use Benedict's test on water, and	on their knowledge of glycosidic bonds	test for reducing and non-	principles and
	on solutions containing sucrose,	- before carrying out this test on a	reducing sugars.	applications. Study Guide
	before and after hydrolysis in hot	sucrose solution. Recommend using		Clegg and Mackean, and
	acid and neutralisation	AR sucrose, not LR or cane sugar.	http://www.mrothery.co.u	Biology, Jones, Fosbery,
	- describe the tests made and the	You could then set them the task of	k/bio_web_prac/practicals/	Taylor and Gregory,
	results obtained	determining which of three solutions	2Food%20Tests.doc	also describes suitable
	use qualitative Benedict's	contain glucose only, sucrose only and	has clear protocols	ways of carrying out these
	solution in a semi-quantitative	a mixture of both sugars. It is well	1	tests.
	way to determine the	worth giving them the opportunity to	http://www.biotopics.co.u	
	approximate concentration of	work this out for themselves.	k/as/cho.html	
	glucose in some solutions by	Practical work should also include	protocol including tests for	
	colour or by mass of precipitate	determining the approximate	reducing and non reducing	
		concentration of an unknown glucose	sugars, and some points to	
		solution. Students will first need to	ponder - maybe a useful	
		carry out the Benedict's test (controlling	starting point.	
		all variables) on a range of solutions of		
		known concentration, and then compare		

	May .
the depth of colour or the mass of precipitate obtained when testing the	Pathac
precipitate obtained when testing the unknown.	and and a

WWW. Pape	
her resource	O.B.
and A level	Dr.
s cover this	8
thoroughly.	- GC

	Learning Outcomes	Suggested Teaching Activities	Online Resources	Other resource
(d)	describe the molecular structure of	Build on the students' understanding of	http://chemed.chem.purdu	Most AS and A level
	starch (amylose and amylopectin),	hydrogen bonding, covered in B(i), to	e.edu/genchem/topicrevie	textbooks cover this
	glycogen and cellulose and relate	explain how these molecules are held in	w/bp/1biochem/carbo5.ht	material thoroughly.
	these structures to their functions in	shape.	<u>ml</u>	
	living organisms	Explain advantage of branching of	has a comprehensive	Biofactsheet 39:
		amylopectin in providing large number	review of carbohydrate	Carbohydrates: revision
	Learning activities	of 'ends' to attach and detach glucose	structure and function,	summary
	 get students to handle strings of 	units	useful as a source of	
	beads on wire or to join hands		extension materials	Biology, Jones, Fosbery,
	and pretend to be 'long, strong			Taylor and Gregory, like
	chains of β glucose residues'		http://www.calfnotes.com/	other texts, uses diagrams
	(cellulose), 'compact, energetic		pdffiles/CN102.pdf	to relate these structures to
	spirals of α glucose residues'		material on the structure	their functions
	(amylose), and 'compact,		and function of these	
	branched, amorphous, energetic		polysaccharides in the	
	shapes of α glucose residues'		context of calf nutrition.	
	(amylopectin and glycogen) – the			
	concrete experiences help to			
	learn a difficult abstract idea			
	 make brief written and 			
	diagrammatic explanations of the			
	relationship between structure			
	and function			

Learning (Outcomes	Suggested Teaching Activities	Online Resources	Other resource
B(e) describe the molecular triglyceride and a prelate these structural functions in living of the molecular make very simply models of trigly illustrate the nor fatty acids, and particular show the very district the molecule. - the cut out phosp laid out side by bilayer (keep the for use in D(a)) - examine diagram triglycerides, de that makes them stores (lots of car	cular structure of a phospholipid and ares to their gorganisms es ple paper cut out ycerides to on-polar exposed phospholipids to different ends of spholipids can be a side to form a ne paper models of escribing evidence in good energy earbon-carbon educed so energy by oxidation,	Suggested Teaching Activities The insolubility of triglycerides, and the behaviour of phospholipids when in contact with watery liquids, should be related to the absence or presence of polar groups; once again, you should refer back to the earlier work on water to help to explain this. It is suggested that you do not go into any detail about saturated and unsaturated fatty acids. You may like to describe the formation of bilayers by phospholipids at this stage, or to deal with this later, in topic D(a). Students should be able to describe a range of functions of lipids in organisms, relating each of these functions to their molecular structure.	http://ntri.tamuk.edu/cell/lipid.html has a nice illustrated review, useful as a source of material	Biofactsheet 42: The structure and function of lipids Biofactsheet 74: The structure and biological functions of lipids Biology, Jones, Fosbery, Taylor and Gregory, like other texts, uses diagrams to relate these structures to their functions

				MMM. Papaca	
	Learning Outcomes	Suggested Teaching Activities	Online Resources	Other resource	
B(a)	carry out the emulsion test for lipids	Students may already know this test	http://www.mrothery.co.u	Practical Advanced	
	 Learning activities use the ethanol emulsion test with vegetable oil and yellow-dyed water use the ethanol emulsion test with crushed fruits and seeds 	from earlier work. They can now use it to investigate the occurrence of lipids in a selection of fruits and seeds.	k/bio_web_prac/practicals/ 2Food%20Tests.doc has clear protocols including this one.	Other resource Practical Advanced Biology, King and Reiss, and Comprehensive Practical Biology Siddiqui and Biology, Jones, Fosbery, Taylor and Gregory include suitable tests.	COR

B(f) (g) (h)	Learning Outcomes describe the structure of an amino acid and the formation and breakage of a peptide bond; explain the meaning of the terms primary structure, secondary structure, tertiary structure and quaternary structure of proteins and describe the types of bonding (hydrogen, ionic, disulphide and hydrophobic interactions) that hold the molecule in shape; describe the molecular structure of haemoglobin as an example of a globular protein, and of collagen as an example of a fibrous protein and relate these structures to their functions Learning activities - examine diagrams of typical amino acid, and simple amino acids, to identify the R group and the part common to them all, as well as the amine group and carboxylic acid group - draw simple diagrams of the structure of a typical amino acid, and to show condensation and hydrolysis of peptide bonds - question and answer / whole	Suggested Teaching Activities Students do not need to know the structures of different amino acids, but they do need to understand that the R (residual) group can take many different forms. There is no need to go into any detail at all about how individual amino acids behave in solution; the behaviour of terminal amine and carboxyl groups in a protein molecule is of little importance compared with the behaviour of the R groups. You could teach the various levels of protein structure with reference to haemoglobin. Its globular shape and solubility (which can be related to the positions of polar R groups on the outside of the coiled molecule) are typical of metabolically active proteins. The structure and function of collagen can be contrasted with this. Note: students often think that to have quaternary structure proteins must be composed of 4 polypeptides.	Online Resources http://www.bbc.co.uk/educ ation/asguru/biology/02bio logicalmolecules/01protein s/index.shtml The BBC AS Guru web site has interactive animations of the formation and breakage of peptide bonds.	Other resource The molecular structure and functions of haemoglobin and collagen are thoroughly covered in Biology, Jones, Fosbery, Taylor and Gregory. If you wanted to take this work further, the use of paper chromatography to analyse the amino acids in albumen is described in Practical Advanced Biology, King et al, and in Comprehensive Practical Biology, Siddiqui. Advanced Biology principles and applications. Study Guide Clegg and Mackean also describes a method for analysing amino acids using chromatography Biofactsheet 80: Structure and biological functions of proteins.	JOB CORT
	and to show condensation and				

	WWW. PS
and the role of bonding in determining shape and stability. - individual students or pairs to make an A4 poster showing the role of one kind of bonding in one level of protein structure, so that the whole group covers all types of bonding and all levels of structure	QHaCambridge.com

	Learning Outcomes	Suggested Teaching Activities	Online Resources	Other resource Advanced Biology principles and applications. Study Guide Clegg and Mackean has a flow chart to show	
B(a)	carry out the biuret test for proteins	Students are likely to have come across	http://www.mrothery.co.u	Advanced Biology	
	Learning activities - Use the biuret test on a solution of egg white, skimmed milk, chicken or tofu and water	this test already, from earlier work. They need this learning reinforced, and they need any confusions corrected.	k/bio_web_prac/practicals/ 2Food%20Tests.doc has clear protocols including this one.	principles and applications. Study Guide Clegg and Mackean has a flow chart to show how the different tests, such as the biuret test, can be used to identify unknown substances or substances in a mixture.	OTT
				Practical Advanced Biology, King and Reiss, and Comprehensive Practical Biology Siddiqui and Biology, Jones, Fosbery, Taylor and Gregory include suitable protocols for this test.	

			,	Other resources A table containing this information is in <i>Biology</i> , Jones, Fosbery, Taylor and Gregory
	Learning Outcomes	Suggested Teaching Activities	Online Resources	Other resources
B(j)	state one role of each of the	This will be revision for most students.	http://www.greenair.com/n	A table containing this
	following inorganic ions in living	Try to use a range of animal and plant	utrient-properties.htm	information is in <i>Biology</i> ,
	organisms: calcium, sodium,	examples.	outlines the functions of	Jones, Fosbery, Taylor and
	potassium, magnesium, chloride,	Emphasise the importance of ions in a	elements and their ions in	Gregory
	nitrate, phosphate	range of biological functions, but	plant nutrition	
	Learning activities	remind students that they need to state		Biofactsheet 60: Minerals
	Devise and complete a table of	one role for each.	http://users.gsat.net.au/astr	in plants and animals
	key roles for each specified ion –		onet/elements/body.htm	
	information coming from		outline of functions of	
	bibliographic and web-based		elements and their ions in	
	research		human physiology	

	Learning Outcomes	Suggested Teaching Activities	Online Resources	Other resources Biofactsheet 8: The cell
D(a)	describe and explain the fluid	To understand membrane structure,	www.ultranet.com/~jkimb	Biofactsheet 8: The cell
	mosaic model of membrane	students bring together their knowledge	all/BiologyPages/C/CellM	surface membrane
	structure, including an outline of the	of the molecular structure and	<u>embranes.html</u>	
	roles of phospholipids, cholesterol,	behaviour of phospholipids, proteins	has a nice illustrated	Biology, Jones, Fosbery,
	glycolipids, proteins and	and carbohydrates.	explanation at an	Taylor and Gregory, like
	glycoproteins		appropriate level	other texts, uses diagrams
	Learning activities			and text to explain this
	 put together a whole class model 			model of membrane
	of a phospholipid bilayer (using			structure.
	the paper cut outs from B(e)) –			
	colour coded for hydrophobic			
	and hydrophilic portions.			
	Students can add protein			
	molecules and channels			
	cholesterol, glycolipids and			
	glycoproteins, already colour			
	coded with hydrophobic and			
	hydrophilic portions			
	 label up pre-drawn fluid mosaic 			
	diagrams			
	 draw simple fluid mosaic 			
	diagrams, annotating with			
	explanations of the terms 'fluid'			
	and 'mosaic'			

No.	0
esources	ON.
d edition of the	Or.
of Biology's	8
1 3 7	-0

	Learning Outcomes	Suggested Teaching Activities	Online Resources	Other resources The third edition of the
D(c)	describe and explain the processes	First deal with thermodynamic (so-	http://www.bbc.co.uk/educ	The time control of the
	of diffusion, osmosis, active	called passive) methods of movement	ation/asguru/biology/01cel	Institute of Biology's
	transport, facilitated diffusion,	across membranes - diffusion,	lbiology/05pathways/index	Biological Nomenclature
	endocytosis and exocytosis	facilitated diffusion and osmosis - and	<u>.shtml</u>	explains the terminology
	Learning activities	then the active ones. Students should	Animations of diffusion,	that should be used when
	 build understanding of diffusion 	understand that facilitated diffusion is	etc.	teaching osmosis. Older
	using students moving around the	simply diffusion through a protein		editions of text books are
	classroom pretending to be	channel, and that osmosis is simply	http://www.emc.maricopa.	likely to use obsolete
	diffusing particles. This model	diffusion of water.	edu/faculty/farabee/BIOB	terminology, which should
	can be extended to facilitated	Take great care with osmosis	K/BioBooktransp.html	be avoided as it can make
	diffusion, osmosis and active	terminology. Use the terms:	First of a series of pages	the whole topic very
	transport by introducing a line of	 partially permeable 	on transport in and out of	confusing for students.
	chairs / desks across the	 water potential 	cells. Clear diagrams and	
	classroom, with suitable sized	 solute potential 	reasonably brief text.	
	gaps, or gaps manned by	 pressure potential. 		Biofactsheet 54: Water
	selective students – use computer	Note that no calculations will be set.		potential
	based animations and diagrams	Students often make the error of		
	 make brief written descriptions 	thinking about how a solution moves,		Biofactsheet 116:
	and draw annotated diagrams	rather than the individual molecules		Transport Mechanisms in
	explaining each of these	and ions within it. Ensure that they		cells.
	processes	understand that each particle is moving		
	 summarise similarities and 	individually and randomly.		Biology, Jones, Fosbery,
	differences between the types of	It may be helpful to use Visking tubing		Taylor and Gregory
	transport in tabular form	as an example of a partially permeable		organises this materials
	1	membrane, to illustrate osmosis.		suitably into transport
				involving natural kinetic
		DO NOT refer to or use the terms		energy, and transport
		osmotic potential, osmotic pressure,		involving energy from
		wall pressure, hypertonic, hypotomic or		hydrolysis of ATP.
		isotonic		

	Learning Outcomes	Suggested Teaching Activities	Online Resources	Other resources Several investigations and described in <i>Practical Advanced Biology</i> , King et al, in <i>Biological Science</i> , ed Soper, pub. CUP and in
D(d)	investigate the effects on plant cells of immersion in solutions of different water potential Learning activities - Use potato tuber (or similar starchy tissue) to find water potential of tissue - Use onion epidermis (or similar 1-cell thick tissue) to find solute potential of tissue	Students may become confused between water potential and solute potential. Water potential may be measured by immersing pieces of root or stem (e.g. potato tuber tissue) in sucrose solutions of different concentrations. The water potential of the tissue is equivalent to the water potential of the solution in which there is no change in length or mass of the tissue. Solute potential may be measured by immersing epidermal strips (e.g. onion) in solutions of different concentrations and counting the number of cells showing plasmolysis. Solute potential of the tissue is equivalent to the water potential of the solution in which 50% of the cells are plasmolysed.	http://www-saps.plantsci.cam.ac.uk/osmoweb/wpmenu.htm Some interesting extensions of these investigations.	Several investigations and described in <i>Practical Advanced Biology</i> , King et al, in <i>Biological Science</i> , ed Soper, pub. CUP and in <i>Comprehensive Practical Biology</i> , Siddiqui.

Mac	
ources	3.
s of cell	On.
es are listed in	80
d Biology, Jones	,G

	Learning Outcomes	Suggested Teaching Activities	Online Resources	Other resources Functions of cell membranes are listed in
D(b)	outline the roles of membranes	Students will now understand the role	http://www.bbc.co.uk/educ	Functions of cell
	within cells and at the surface of	of the plasma (cell surface) membrane	ation/asguru/biology/01cel	inclibrancs are fisted in
	cells	in controlling the passage of substances	lbiology/05pathways/index	Advanced Biology, Jones
	Learning activities	into and out of the cell. They may now	<u>.shtml</u>	and Jones.
	 list the eukaryote organelles 	appreciate that membranes have a wide	has information about the	
	bounded by membrane, and list	range of other roles, although if they	functioning and roles of	In <i>Biology</i> , Jones, Fosbery,
	some of the key materials that	have not yet done unit 1, they will not	membranes and their	Taylor and Gregory, the
	need to move in and out through	yet in a position to understand these in	components.	roles of components are
	each of these membranes (from	detail.		clearly described.
	Unit 1 work, bibliographic and		http://www.emc.maricopa.	
	web-based research)	If Unit 1 is completed, students should	edu/faculty/farabee/BIOB	
	- draw a diagram of a piece of	be prompted to recall the functions of	K/BioBooktransp.html	
	plasma membrane, and annotate	membranes within cells by referring to	Clear diagrams and	
	the parts responsible for	the functions of organelles that are	reasonably brief text about	
	movement of ions (actively and	covered in Unit 1.	exchange through	
	by facilitated diffusion), water,		membranes.	
	gases, small polar molecules,	The cell recognition function of cell		
	lipid-soluble molecules through	surface membranes is covered in Unit 5		
	the membrane, cell recognition,	when describing the functions of		
	responding to levels of extra-	lymphocytes.		
	cellular hormones like insulin			
	and adrenaline and other			
	functions (from bibliographic and			
	web-based research)			