in a complete

UNIT 3 Enzymes and Genetic Control

Timing This unit comprises approximately 20% of the learning material in AS Biology, and about 10% of the learning material in a complete Biology A Level learning programme.

Recommended Prior Knowledge Students will need to have studied Units 1 and 2 before beginning this Unit

Context An understanding of enzyme function will be required in order to understand how DNA controls cell function. DNA and protein synthesis will be revisited if students continue to A2 level.

Outline This Unit builds on knowledge of protein structure from Unit 2, in describing and explaining enzyme activity. There are many opportunities for practical work, and this provides an excellent opportunity for students to develop their practical skills, including their ability to plan and evaluate investigations. DNA and protein synthesis leads on from work in Unit 2 on molecules. There are good opportunities within this Unit for students to develop their practical skills relating to Assessment Objectives in Group C (Experimental skills and investigations) including the design and evaluation of their own investigations. Try to ensure that each student works alone and under time pressure on some occasions, as this will help to prepare for the practical examination(s).

>

Reinforcement and formative assessment It is recommended that, towards the end of the time allocated to the unit, time be taken to permit reinforcement of the learning that has occurred. This might take the form of structured revision and questions, perhaps making use of online question banks such as http://www.learncie.org.uk/ or http://exam.net/public/misc/pub_home.asp.

Formative assessment could take the form of student self-marked minitests, taking just 10 or 15 minutes for students to do and then mark for themselves, perhaps using questions from the banks above – discussing the correct answers as a whole class. At the end of the unit, there should be a much larger formative assessment test, using appropriate past-examination and similar style questions, taking a lesson to do, and a lesson to provide feedback after marking by the teacher.

	Learning Outcomes	Suggested Teaching Activities	Online Resources	Other resources All AS and A level texts
C(a)	explain that enzymes are globular	Use questioning to check students'	http://www.bbc.co.uk/educ	All AS and A level texts
(b)	proteins that catalyse metabolic	knowledge of enzymes; it is likely that	ation/asguru/biology/02bio	cover this topic
	reactions; explain the mode of	some will associate them only with	logicalmolecules/01protein	thoroughly.
	action of enzymes in terms of an	digestion, and it is important to correct	s/11enzymes/index.shtml	
	active site, enzyme-substrate	this mistake at an early stage. Revise	Descriptions and	
	complex, lowering of activation	the meaning of the term 'catalyst'.	explanations of how	
	energy and enzyme specificity	Ensure that students understand that	enzymes work, including a	
		there are many types of catalyst other	simple animation	
	Learning activities	than enzymes.		
	 use paper cut out models, simulations, and whole class discussion to develop understanding of mode of action of enzymes, and the importance of complementary shape and fit give a brief written description and annotated 'boulder analogy' graph to make the point that although the energy content of substrate and products is not changed, the reaction pathway follows a lower energy course 	Students will have already covered protein structure in Unit 2, so it should be a relatively small step forward to explain enzyme structure, including the active site. Emphasise the crucial role of the R groups of amino acids at this site in binding with the substrate.		

Space	
esources	B.
us that could be	On
for this	E.
ation is shown in	G.C.

	Learning Outcomes	Suggested Teaching Activities	Online Resources	Other resources Apparatus that could be
C(c)	follow the course of an enzyme-	This practical work should illustrate the	http://www.seps.org/cvora	Apparatus that could be
	catalysed reaction by measuring	change in the rate of product formation,	<u>cle/faq/catalase.html</u>	adapted for this
	rates of formation of products or	or substrate disappearance, as an	useful background	investigation is shown in
	rates of disappearance of substrate	enzyme-catalysed reaction runs its	information	Practical Advanced
	Learning activities	course. Students who have studied		Biology, King et al.
	Learning activities	chemistry will almost certainly be	http://www.science-	
	use yeast suspension as a source	familiar with the way in which other	projects.com/catalasekineti	Comprehensive Practical
	of catalyse, and measure the rate	reactions, such as the production of	<u>cs.htm</u>	Biology, Siddiqui has
	of release of oxygen (product)	carbon dioxide by the action of	source of potential	several protocols that
	from hydrogen peroxide – most	hydrochloric acid on marble chips,	methods and analyses	could be used here.
	easily by collecting over water.	proceed and this will help them here.	1	4.1 10.1
	Use amylase (or diastase) to	Catalase is a good enzyme for this	http://www.enzymes.co.uk	Advanced Biology principle and applications. Study
	break down starch, finding the	investigation, as the product (oxygen)	/questions1.htm	Guide Clegg and Mackean
	time taken to remove all the	of the reaction can be collected over	interesting questions and	also has a number of
	starch	water and its volume measured at	explanatory material	suitable protocols to
	- discuss as a whole class, and then	regular time intervals. There are several		follow.
	make a brief written explanation,	possible methods of measuring the rate		Tonow.
	in terms of initial rate of reaction,	of oxygen production, for example		The theory behind it is
	why measuring the rate of	measuring the rate of loss of mass in		explained in <i>Biology</i> ,
	formation of products is a more	the reaction vessel (stand it on the pan		Jones, Fosbery, Taylor an
	reliable measure of rate of	of an electronic balance) or using a gas		Gregory.
	enzyme reaction that rate of	syringe or manometer to measure the		Gregory.
	disappearance of substrate	change in volume of oxygen with time.		
		Students should be able to explain the		
		initial steep release of product, which		
		then flattens out, in terms of the		
		behaviour of the enzyme and substrate.		
		Students may also follow the		
		disappearance of starch. If, so they need		
		reminding that they are using iodine		
		solution to show the loss of starch from		

	WWW. D
the reaction mixture. Samples have to be taken at regular intervals and tested with iodine solution. It is more difficult to produce quantitative results using this method, but it can be done using a colorimeter.	apacambridge.co

sources
Advanced
King et al, has

Learning Outcomes

C(d)

investigate and explain the effects of temperature, pH, enzyme concentration and substrate concentration on the rate of enzymecatalysed reactions, and explain these effects

Learning activities

- Planning and carrying out an investigation into the effect of temperature on rate of an enzyme catalysed reaction (with control of other variables) e.g. the yeast catalase experiment introduced in C(c)
- Carrying out an investigation into the effect of pH on rate of an enzyme catalysed reaction (with control of other variables) e.g. protease (trypsin) digesting protein in exposed film
- Contribute to question and answer / whole class discussion followed by written explanation and drawing of annotated graphs showing the key impact of;
 - o rate of collisions (e.g. at low temperatures, in relation to concentration of enzyme and substrate (at low substrate

Suggested Teaching Activities

Before beginning this work, it is worth explaining that what should ideally be measured is the **initial** rate of enzyme activity. Measuring time taken for complete removal of substrate can sometimes lead to confusion, and is completely unsuitable if you are trying to measure the effect of substrate concentration (it gives seemingly 'contradictory' results, because with more substrate it actually takes longer for it all to disappear, even though the rate of reaction is faster!). This is a good opportunity to improve students' skills of planning an investigation in which several variables need to be controlled. You could perhaps discuss with the whole group the design of one experiment which is then carried out by the whole class, and later allow groups, pairs or individuals to plan and carry out their own investigations.

Students often confuse the experiment where they follow the course of an enzyme-catalysed reaction with the effect of increasing substrate concentration on the rate of a reaction. This is probably because the curves are the same shape.

Online Resources

http://www.ncbe.reading.a c.uk/NCBE/PROTOCOLS /menu.html Introduction to pdf downloads. Some downloadable booklets with a wide range of enzyme-based practical activities. For example, http://www.ncbe.reading.a c.uk/NCBE/PROTOCOLS /juice.html links to several downloads for several fruit juice

http://wwwsaps.plantsci.cam.ac.uk/wo rksheets/ssheets/ssheet14.h tm

based practicals.

An interesting experiment using phosphatase, as well as ideas for students to design their own investigations.

http://www.biology4all.co m/resources_library/1.asp A protocol for an investigation using immobilised invertase

Other resources

Practical Advanced Biology, King et al, has protocols, background information and questions covering several enzyme practicals, as well as numerous ideas for individual planning.

Comprehensive Practical Biology, Siddiqui, also has protocols for these investigations as does Advanced Biology principles and applications. Study Guide Clegg and Mackean

Biofactsheet 43: Factors affecting enzyme activity

	The examplar practical
concentrations	
hydrogen bonding,	lesson on the CIE Teacher
tertiary structure,	Support website at
shape of active site	lesson on the CIE Teacher Support website at http://teachers.cie.org.uk
and complementary	
fit of substrate (e.g.	
at high temperatures	
and in relation to pH	

	Learning Outcomes	Suggested Teaching Activities	Online Resources	Other resources	
C(e)	explain the effects of competitive and non-competitive inhibitors on the rate of enzyme activity Learning activities - investigate the effect of a non-competitive inhibitor (solutions of lead nitrate, copper sulphate or silver nitrate) on an enzyme-catalysed reaction (e.g. protease (trypsin) on exposed film or fruit oxidase enzymes and browning of fruit) - be involved in a question and answer / whole class discussion, leading to individual written explanations of the effect of competitive inhibitors (act at active site, reversible, overcome by high substrate concentrations, occupation of active site by inhibitor reduces collisions) and non-competitive inhibitors (act away from active site, may be reversible or irreversible, reduce maximum rate irrespective of substrate concentration, change the shape of the whole enzyme molecule including the active site so the substrate no longer fits)	Only an outline is required here. It is best to restrict discussion to reversible inhibitors that act either at the active site (competitive) or elsewhere (noncompetitive). If the students carry out an investigation with an irreversible inhibitor then they should be made aware of this type of inhibition.	http://www-saps.plantsci.cam.ac.uk/worksheets/activ/prac2.htm A protocol for an interesting investigation into a non-competitive inhibitor (banana catechol oxidase and lead) To show that an inhibitor is competitive is difficult because students need to make up separate reaction mixtures with different concentrations of the substrate.	Other resources	bridge.com

apac	
resources	
and A level text	Or.
cover these topics	· Gar
noroughly.	i.G
	On

	Learning Outcomes	Suggested Teaching Activities	Online Resources	Other resources All AS and A level text
F(a)	describe the structure of RNA and	You may like to begin this topic with a	http://www.dnaftb.org	All AS and A level text
	DNA and explain the importance of	discussion about exactly what DNA	This deals with many	books cover these topics
	base pairing and hydrogen bonding	does, before embarking on its structure.	aspects of DNA and	very thoroughly.
		Ask students to recall what they know	genetics. Within the	
	Learning activities	of protein structure, and then explain	section Molecules of	
	 label pre-existing diagrams of 	that DNA encodes instructions for the	Genetics are sections	
	DNA to show nucleotides, phosphate, deoxyribose, sugar- phosphate backbone, adenine,	sequence in which amino acids are	relevant to this Unit.	
		linked together. Then consider the		
		requirements for such a molecule - how		
	thymine, cytosine, guanine,	the information might be carried, the	http://www.bbc.co.uk/educ	
	hydrogen bonds, base pairing	need for stability, and the need to be	ation/asguru/biology/04ge	
	between A and T, and between C	able to replicate so that the information	nesgenetics/index.shtml	
	and G	can be passed on to daughter cells.	Clear descriptions of DNA	
	 take a diagram of single strand of 		and RNA structure, with	
	DNA and add to it appropriate	The history of the discovery and	animations.	
	drawings of nucleotides to create	understanding of DNA makes		
	a second strand	fascinating reading. You might like to		
	 question and answer / whole 	ask students to research this.	http://accessexcellence.org	
	class discussion on the relative		/AB/GG/	
	strength of the bonds that hold	Take care that during your teaching you	Images of RNA and DNA	
	the sugar-phosphate backbone	do not accidentally cause confusion	structure.	
	together compared to those that	(e.g. between thymine and thiamine, or		
	hold together the two strands of	between adenine and adenosine - these	http://gslc.genetics.utah.ed	
	DNA	are very common errors, or between	<u>u/units/activities/wheatger</u>	
	 make a summary table of the 	nucleotides and amino acids – for	<u>m</u>	
	similarities and differences	example by stating that DNA is	A simple protocol for	
	between DNA and RNA	composed of amino acids – a very	extracting DNA.	
	 make a summary table of 	common wrong answer in		
	correctly matched pairs of pieces	examinations). It is a good idea not to		
	of information (e.g. thymine =	tell students directly that they will find		
	base only found in DNA,	these things confusing. It is far better		
	thiamine = vitamin; adenine =	to give them access to the information		

		WWW. P.
base found in DNA and RNA, adenosine = the A in ATP; nucleotide = monomer / building block of DNA and RNA, amino acid = monomer / building block of protein)	correctly (e.g. from books), and ask them to write out correct meanings / matches	ADAC AMBRIDGE

	Learning Outcomes	Suggested Teaching Activities	Online Resources	Other resources
F(b)	explain how DNA replicates semi- conservatively during interphase Learning activities - use computer simulations and whole class discussion / question and answer to build understanding of DNA replication - use photocopies / jigsaw puzzles of DNA diagrams and matching nucleotides to simulate DNA replication	If you have already covered mitosis, then you could begin this topic by reminding students of the necessity for chromosomes to divide before mitosis occurs. Try to ensure that they make connections between mitosis, chromosomes and DNA: each chromosome contains a DNA molecule. DNA replication results in two identical DNA molecules, one in each identical chromatid. Animations can be very helpful in aiding understanding of DNA replication. Students should understand the meaning of the term 'semiconservative'. There is no need to go into details of any other possible methods of replication, nor of experiments such as those of Meselsohn and Stahl - though these could form the basis of interesting questions to test students' understanding.	http://www.bbc.co.uk/educ ation/asguru/biology/04ge nesgenetics/02replication mitosis/index.shtml Explanation and animations of DNA replication. http://www.accessexcellen ce.org/AB/GG/dna_replica ting.html Diagram and notes on semi-conservative replication	All AS and A level text books cover these topics very thoroughly.

WWW. Papac
Other resources
All AS and A level text
books cover these topics
very thoroughly.

	Learning Outcomes	Suggested Teaching Activities	Online Resources	Other resources All AS and A level text
F(c)	state that a gene is a sequence of	It is a good idea to give students an	http://www.bbc.co.uk/educ	
(d)	nucleotides as part of a DNA	overview of the way in which DNA	ation/asguru/biology/04ge	books cover these topics
(f)	molecule, which codes for a	codes for protein structure, before	nesgenetics/index.shtml	very thoroughly.
	polypeptide;	going into the details of how this	has information about the	
	describe the way in which the	process occurs. The important point to	nature of the genetic code	
	nucleotide sequence codes for the	get over here is that the sequence of		
	amino acid sequence in a	nucleotides in part of a DNA molecule	http://www.kumc.edu/gec/	
	polypeptide;	codes for the sequence of amino acids	has links to lots of sites	
	explain that, as enzymes are	in a protein.	that have information	
	proteins, their synthesis is controlled		about the human genome	
	by DNA	You can also get them to think back to	project, genetic code and	
		what they know about protein structure	many other related topics	
	Learning activities	and function, and remind them how the		
	 whole class discussion / question 	function of a protein - including		
	and answer to build	enzymes - depends on the sequence of		
	understanding of the triplet code	amino acids within it.		
	 use a DNA dictionary to work 			
	out, from specific nucleotide base	An error that frequently appears in		
	sequences, specific amino acid	answers to examination questions on		
	sequences, including normal and	this topic is confusion between		
	sickle-cell haemoglobin	nucleotides and amino acids. It is very		
	make a flow diagram, linear	important to reinforce the correct		
	sequential notes or annotated	relationship between nucleotides and		
		DNA / RNA, and between amino acids		
	diagram showing that: DNA codes for the amino acid	and protein. A learning methodology		
		called 'error-free learning' shows that		
	sequence in protein, which is the	when students 'guess' or are given		
	primary structure; primary	<i>incorrect</i> matches, it is the <i>incorrect</i>		
	structure determines where the	matches that they learn, so they must		
	protein chain spirals and folds	<i>never</i> be given incorrect matches as a		
	(secondary and tertiary	learning tool (see also F(a)).		
	structure); secondary and tertiary			
	structure determines the shape;			

www.	
Tolk to the state of the state	a Cambrid
	MANN, Pak

WWW. Papac
esources
heet 22: Protein
s I – nucleic acids
heet 49: Protein

	Learning Outcomes	Suggested Teaching Activities	Online Resources	Other resources
F(e)	describe how the information on	It is very important to ensure that	http://www.bbc.co.uk/educ	Biofactsheet 22: Protein
	DNA is used to construct	students understand the overall	ation/asguru/biology/04ge	synthesis I – nucleic acids
	polypeptides, including the role of	sequence of events here, before they get	nesgenetics/index.shtml	Biofactsheet 49: Protein
	messenger RNA, transfer RNA and	bogged down in the details of	good information on this	synthesis II – mechanisms
	the ribosomes	transcription and translation. Ensure	topic, with excellent	
		that they understand the role of mRNA	interactive animations	All AS and A level text
	Learning activities	in carrying a copy of the information	aimed at AS level students	books cover these topics
	whole class discussion / oral	from DNA to the ribosome, and the role		very thoroughly.
	question and answer, animations	of tRNA in translating this information	http://www.pbs.org/wgbh/	
	and reinforcement written	into the sequence of amino acids that	aso/tryit/dna/	
	questions to build understanding	are strung together. Incidentally,	the DNA workshop	
	of the genetic code, the role of	transCription comes before	activity on protein	
	mRNA and transcription	transLation alphabetically as well as in	synthesis places the	
	- revisit the DNA sequences met in	protein synthesis.	student inside the cell.	
	F(c),(d)&(f), plus decode new	protein synthesis.	There are also links to	
	DNA sequences, with only a	Animations can be very helpful in	other sites on, for example,	
	mRNA codon dictionary,	describing how translation and	Crick, Franklin and some	
	transcribing from DNA to	transcription take place.	relevant applied research.	
	mRNA, and then working out	r a r r r r r r r r r r r r r r r r r r		
	from the dictionary, the sequence			
	of amino acids			
	whole class discussion / oral			
	question and answer, animations			
	and reinforcement written			
	questions to build understanding			
	of translation and the role of			
	tRNA and ribosomes.			
	 Use the DNA sequence for the 			
	first 6 amino acids in drawing a			
	comprehensive whole page			
	annotated diagram to show			
	transcription and translation – the			

nn	
	and and the
	www.