www.PapaCambridge.com

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

Specimen for 2007

GCE A LEVEL

MARK SCHEME

MAXIMUM MARK: 100

SYLLABUS/COMPONENT: 9700/04

BIOLOGY STRUCTURED QUESTIONS

	age z	GCE A LEVEL –	2007	970
				970 182
(a)		e of carbon dioxide given off; e of oxygen taken up	R amount	A moles Almania
(b)	(i) 18H ₂ O; 18CO ₂ ;			[2]
	(ii) 18/26; = 0.69 –	0.70;	allow 2 marks t	for correct answer [2]
(c)	carbohydrate	substrate; 1 some anaerobic respiration/ref. t e 1/protein 0.9/fat 0.7 ;; metabolic processes using oxygen/	2 out of 3	[2 max]
(d)	record level of change in known repeat; open clip and ref. units; ref. to boiled	seeds as a control; absorbs carbon dioxide given off;		[4 max]
(e)		iment/ref. to comparison; er manometer rose or fell;		[2 max]
(f)	ref. <u>named</u> e	temperature on enzymes in respiration of temperature e.g. increased		rgy/more substrate
	ref. to $Q_{10} = 2$	ith activation energy; 2		[2 max]
				Total: 15
(a)	stroma of ch	oroplast;		[1]
(b)		th (5C compound) RuBP; able 6C compound/forms 2 molecul rubisco;	les of (3C) GP;	[2 max]
(c)	(reduced NA ref. use of A	DP and ATP; rce of energy; DP is for) reduction of GP(PGA) to IP in regeneration of RuBP; e of phosphate/phosphorylation;	triose phosphate (TP	'); [3 max]
(d)	due to reduc	nulates/goes up; ed combination with CO ₂ /AW; wn/not as much being formed;	in either RuBP	or GP, not both
	due to conve			[2 max]
				Total: 8

Mark Scheme

Page 2

Page 3	Mark Scheme	Sy per
	GCE A LEVEL – 2007	970
(a) <u>Either</u> If genetic diagram used	Penalise once for incorrect	t symbols
	orange dominant to black (fo	or converse);
orange scallop		

3 (a) Either If genetic diagram used

Penalise once for incorrect symbols

parents		S°Sb		X		S°Sb	
gametes	S°	0.0	S ^b	Α	S°	0 0	S^b
genotype	S° S°		S° Sb		S° Sb		S ^b S ^b
phenotype			orange				black
black scallop		S ^b S ^b		Χ		S ^b S ^b	
parent							
gametes			(S ^b		S^b)
genotype				S ^b S ^b			
phenotype				black			

If text explanation given

orange dominant to black (or converse); orange are heterozygous; (because) ref. 3:1 ratio; link data to ratio; black are homozygous; because all offspring are black;

(b) separate orange scallops produced from first cross/test cross orange with black;

some will produce only orange offspring;

these will be homozygous for orange allele/pure breeding; [2max]

Total: 8

(a) Fungi; (accept fungus)

Protoctista; (accept Protista) Animalia; (accept animal)

Prokaryotae; (accept Prokaryote, bacteria)

Plantae; (accept plant)

(b) advantages

IDEA of simplicity;

easy to classify most organisms into the correct kingdom;

consistent with the traditional literature / AW;

[6]

[5]

Page 4	Mark Scheme	Sy per
	GCE A LEVEL – 2007	970

disadvantages

plant kingdom, is artificial / contains unrelated organisms / organisms that are not fundamentally similar;

ref. to prokaryotes and eukaryotes in the same kingdom;

ref. to other valid example of very differently organised organisms in the same kingdom; problem of what to do with protoctists / AW;

detail of difficulty with protoctists (e.g. Euglena is motile (animal-like) but autotrophic (plant-like); [4 max]

(c) (i) IDEA that biodiversity is about the variety of different kinds of organisms;
BUT there are far more than hundreds of sorts of organisms / there are millions of species;

AND biodiversity is all kinds of organisms / not just animals; (independent points)

- maintaining biodiversity is important because
 IDEA of extinction is forever / once they are gone they are gone;
 Any two from it is, a source of genes for future use / medicines not yet known / foods not yet known / the means of retaining stability of ecosystems;;
- iii) argues that protected species can be successfully protected in artificial environments / zoos / botanic gardens / seed banks; argues that species can be successfully protected in controlled natural environments / conserved areas / national parks / AW; a specific, named, example of successful conservation (e.g. golden lion tamarins in zoos);

Mark straight through

[6 max]

Total: 15

5 (a) restriction (endonuclease) enzyme;

named example; e.g. EcoR1 specific, sequence of bases/point;

ref. to sticky ends/exposed bases;

[3 max]

(b) sticky ends added to insulin gene;

ref. to complimentary base pairing/C and G bases pair up;

ref. H bonds;

(DNA) ligase;

formation of phosphodiester bond/seals sugar phosphate backbone;

[3 max]

(c) identical to human insulin (ref. to bovine/porcine insulin used previously);

ref. to reduced immune response/side effects;

cheaper to produce;

more rapid response;

pure/uncontaminated;

regular production not dependent on livestock;

ethical issues;

AVP; e.g. tolerance

[2 max]

		2.
Page 5	Mark Scheme	Sy per
	GCE A LEVEL – 2007	970

6 (a) anaerobic / in absence of oxygen;

glycolysis;

IDEA OF because if it was aerobic, no ethanol / only carbon dioxide and water, would be produced;

sugar(s) / named sugar is respiratory substrate;

ethanol produced;

carbon dioxide produced;

[3 max]

(b) (i) end product not contaminated;

enzyme, more stable/less likely to be denatured;

enzyme recovery easier;

idea of enzyme being reused;

AVP; e.g. cost

[3 max]

(ii) α amylase;

more maltose produce;

use of figures;

[2 max]

Total: 8

7 (a) no petals;

no nectaries;

no scent produced;

large stigma;

feathery stigma;

to trap pollen;

stamens hang outside flowers;

flowers held on tall inflorescences;

pollen light and smooth;

[4 max]

(b) self pollination

reliable:

if plants widely scattered;

effective in harsh environments;

e.g. high mountains

max 2

cross pollination

genetic variation;

ref. outbreeding;

genes shuffled every generation;

species more likely to survive environmental change; max 2

[4 max]

Total: 8

8 (a) (i) anterior pituitary gland;

(ii) follicles in ovary; (both required)

(iii) corpus luteum (in ovary);

$$pituitary + ovary + ovary = 1$$

[3]

(b) (i) FSH is an oestrogen agonist / AW;

Page 6	Mark Scheme	Sy per
	GCF A LEVEL - 2007	970

FSH stimulates follicles to develop (in ovary); as follicles grow they contain more (granulosa) cells; (granulosa) cells secrete oestrogen; oestrogen inhibits FSH production; peak in oestrogen stimulates LH release; LH triggers ovulation; ref. hormones circulate / reach target organs, in blood;

[4 max]

(ii) rise / peak in oestrogen (before ovulation); causes proliferation / growth of uterus lining; rise / peak in progesterone (after ovulation); maintains uterus lining;

IDEA OF transforms uterus lining from proliferative to secretory;
Drop in progesterone, causes uterus lining to break down / initiates menstruation;
correct ref. figures e.g. oestrogen peak at 10 days / progesterone peak at 21 days;
ref. endometrium;

[4 max]

- (c) (i) $\frac{4.0 2.2 \, cm^3}{4y}$ = 0.45; cm³ per year; (accept 1.8 cm³ per 4 years for 1 mark) [2]
 - (ii) $\frac{0.45}{2.2}$ = 0.20 or 0.2;; (accept errors carried forward) [2]

Total: 15

9 (a) Explain how a synapse functions.

[9]

(b) Describe the role of glucagon in regulating blood glucose.

[6]

- (a) 1 depolarisation/action potential;
 - 2 of presynaptic membrane/synaptic knob;
 - 3 opening calcium ion channels;
 - 4 calcium ions in;
 - 5 vesicles containing transmitter/acetylcholine;
 - 6 fuse with membrane;
 - 7 contents emptied into synaptic cleft/exocytosis;
 - 8 transmitter/acetylcholine diffuses across synaptic cleft;
 - 9 transmitter/acetychloine binds to receptor; **R** protein channel
 - 10 on post synaptic membrane;
 - 11 Na⁺ channels open/NA⁺ enters;
 - 12 depolarises post synaptic membrane;
 - 13 action potential set up/impulse transmitted
 - 14 breakdown/hydrolysis of transmitter/acetylcholine by enzyme/cholinesterase; [9 max]

									1	my.	
Page 7			7	Mark Scheme Sy				.0	per		
					GC	CE A LEVEL	_ – 2007			970	000
	(b)	16 17 18 19 20 21 22 23	glucagor (acts on breakdor use of fa production liver relegiucose switching) liver (cells wn of glyco tty acides i on of gluco ases gluco levels rise/ g off glucag	from alpha s); gen to glu n respirati se from ot se into blo return to n gon secreti	a cells (in p cose; on; her compo ood; ormal;	,); R fats s/amino acid			
		24	antagoni	stic to insu	lin;						[6 max]
											Total: 15
10	(a)	1 2 3 4 5 6 7 8 9	genetic/i variation (can be e e.g. of cl ref. intra- those wi pass on	due to) intenaracteristi specific conth th favourable favourable	riation; rpe/charac raction of c that influ mpetition/s le charact character	variation; eteristics/A\ genotype a ences surv struggle for eristics sur istics to off characterist	and envir vival; existenc vive/AW spring;	ce;			[6 max]
	(b)	11 12 13 14 15	ref. allop geograp ref. to ex ref. to ex ref. to po isolated	hical isolati amples e.ç ample orga ppulations p populations	on; g. islands/l anism; prevented s subjected	from interb	reeding; nt selecti	ins/idea of l ion pressure eeding;		tions;	

[9 max]

Total: 15

18 ref. sympatric;

19 ref. to reproductive isolation;

21 e.g. day active/night active;22 correct ref. to gene pool;

23 change to allele frequencies;

20 ref. behavioural barriers (within a population);