Centre Number Candidate Number Name

www.PapaCambridge.com UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Level

BIOLOGY

9700/04

Paper 4 Structured Questions

For Examination from 2007

Specimen Paper

2 hours

Additional Materials: Answer Booklet/Paper

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Section A

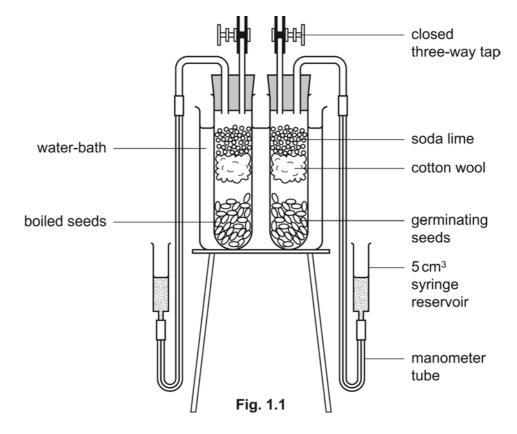
Answer all questions.

Section B

Answer **one** question.

Write your answer on the separate Answer Booklet/Paper.

At the end of the examination, fasten all your work securely together.


The number of marks is given in brackets [] at the end of each question or part question.

[2]

1	(a)	Sta	te what is meant by the term respiratory quotient (RQ).	DaCar
				[1]
	(b)	(i)	Complete the following equation for the aerobic respiration of the respiratory substrate A.	
			C ₁₈ H ₃₆ O ₂ + 26O ₂ +	[2]
		(ii)	Calculate the respiratory quotient (RQ) of this respiratory substrate.	

(c) Explain the significance of the different values that may be obtained of RQ.

Two respirometers were set up as shown in Fig. 1.1.

	the state of the s	
	3 A.A.D.	For
	ADAC.	Examiner's Use
(d)	Outline how this apparatus is used to measure the rate of oxygen uptake by a known mass of germinating seeds.	Midde
		.COM
		1
	[4]	
(e)	Explain how the apparatus could be modified to measure the RQ of the germinating seeds.	
	[0]	
	[2]	
(f)	Explain why an increase in temperature from 15 °C to 25 °C will increase the rate of oxygen uptake in germinating seeds.	
	[2]	
	[Total: 15]	

Fig. 2.1 shows the main stages of the Calvin cycle. 2

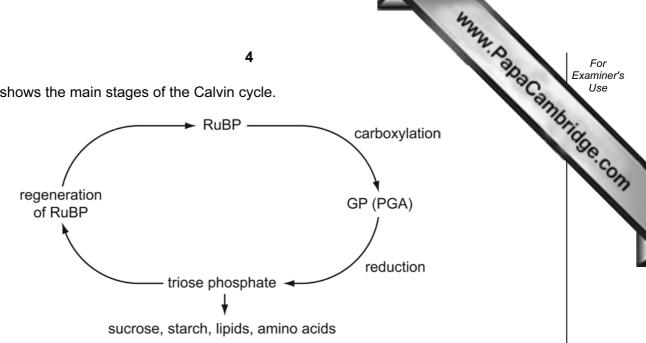


Fig. 2.1

(a)	State precisely where the Calvin cycle occurs in plant cells.	[1]
(b)	Describe how carbon dioxide is fixed in the Calvin cycle.	
		[2]
(c)	Explain how the products of photophosphorylation are used in the Calvin cycle.	
		[3]
(d)	Explain what initially happens to the concentration of RuBP and GP if the supply of carbon dioxide is reduced.	
	RuBP	
	GP	
		[2]

[Total: 8]

www.PapaCambridge.com 3 Scallops, which are bivalve molluscs, are important commercially throughout the The marine bay scallop, Agropecten irradians, has three distinct shell colours, year orange and black. The shell colour is controlled by a gene with three alleles, yellow, orange, **S**°, and black, **S**^b.

Scallops are hermaphrodite and are able to fertilise themselves to produce offspring.

Single mature adult specimens of yellow, orange and black scallops were collected and kept in separate tanks of seawater until they produced young. The young were then scored for shell colour. The results were as follows:

yellow scallop – 25 yellow and 8 black orange scallop – 31 orange and 9 black black scallop – 27 black

••
••
[]
s
?]

[Total: 8]

	4
6	M. Day
4 (a) The table shows information about some organisms and their class	ssification.
Complete the table by putting the correct kingdom for each organized first one has been done for you. Each kingdom may be required or not at all.	
Features of organism	kingdom
Body composed of single isolated cells. Heterotrophic eukaryotic cells without a cell wall. Organism motile.	Protoctista
Body composed of a mass of undifferentiated cells. Heterotrophic eukaryotic cells with a chitin cell wall. Not motile.	
Body composed of a small ball of undifferentiated cells. Autotrophic eukaryotic cells with a cellulose cell wall and flagellum. Organism motile.	
Body complex and multicellular, differentiated into a variety of tissues and organs. Heterotrophic eukaryotic cells with no cell wall, some cells have flagellae.	
Organism motile.	
Body a string of tiny undifferentiated cells. Heterotrophic prokaryotic cells with a peptidoglycan (murein) cell wall. Not motile.	
Body complex and multicellular, differentiated into a variety of tissues and organs. Autotrophic eukaryotic cells with a cellulose cell wall.	
Not motile.	
	[5]
(b) In traditional classification there were considered to be only to were in one kingdom, and all other organisms were in the other.	
Suggest the advantages and disadvantages of such a two-l compared to the five kingdom classification often used today.	kingdom classification

[4]

www.PapaCambridge.com (c) A student stated that 'maintaining biodiversity is not important because there already hundreds of sorts of different animals and anyway, you just can't protect the protected species properly.'

Discuss the extent to which this statement,

(i) defines biodiversity
(ii) addresses the need to maintain biodiversity
(iii) evaluates the available methods of protecting endangered species.
[6]

[Total: 15]

Fig. 5.1 outlines the way in which the gene for human insulin is incorporated into plas 5 DNA and inserted into a bacterium.

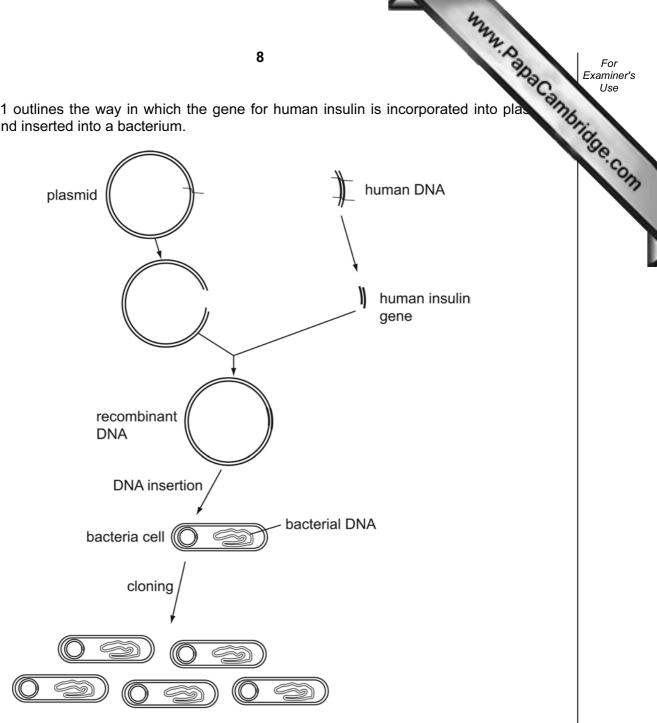


Fig. 5.1

	Describe how the plasmid DNA is cut.
(a)	Describe how the plasmid DNA is cut.
	[3]
(b)	Explain how the human insulin gene is joined to the plasmid DNA.
	[3]
(c)	List two advantages of treating diabetics with human insulin produced by genetic engineering.
	1
	2
	[2]
	[Total: 8]

	For
E.	For xaminer's
	1100

(a)	Describe th	e roles of barle	ey and yeast enzymes	in beer production.	acan,
					[3]
(b)	more popul of immobilis (i) Explair	ar. Light beers sed fungal amy in the advantage	n. Recently, 'light' been have a low starch con lase after the mashing end of using immobilised when the mashing immobilised are types of immobilities of e.1. In these reactions	entent. This is achie process. I enzymes in this process.	ved by the addition cess. [3] on the hydrolysis of
			Table 6.1		-
			mass of malto	ose produced/g	
		time/h	α amylase	β amylase	
		0	0	0	
		1	0.05	0.05	
		2	0.20	0.10	
		3	0.60	0.20	
			ole 6.1, explain which ers with a low starch c		ould be used in the
					[2]

[Total: 8]

(a)	Describe the structural features of wind pollinated plants such as grasses.	Shidge Com
		Tage
		.com
		_
	[4]	
(b)	State two advantages of self pollination and two advantages of cross pollination.	
	self pollination	
	1	
	2	
	cross pollination	
	1	
	2	
	[4]	
	[Total: 8]	

8 (a) Name the precise sites of production in the human male of the following hormon

(ii) luteinising hormone (LH) or interstital cell stimulating hormone (ICSH);

- www.PapaCambridge.com (i) follicle stimulating hormone (FSH);
- (iii) testosterone.

[3]

(b) Fig. 8.1 shows the concentration of the hormones FSH, LH (ICSH) and testosterone in the blood of a human male at different ages.

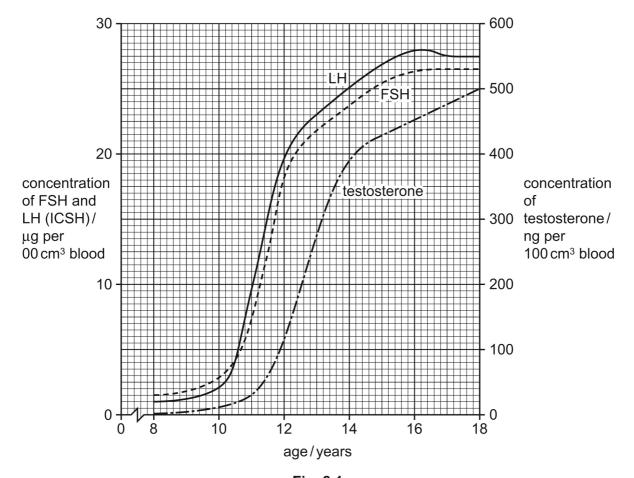


Fig. 8.1

With reference to Fig. 8.1, describe and explain the changes in concentration of:

(i)	FSH and LH (ICSH);	

		13	Fo Examin Usi
(ii)	testosterone.		
•••••			
			[4]
able	e 8.1 shows the mean mass of the	_	
	Table		_ _
	age/years	mean mass of human testis/g	_
	10	2.0	_
	12	3.0	
	14	8.0	
	16	18.0	
	18	28.0	
\heo	plute growth rate may be defined a	c.	
Relat Relat A With each	ncrease in mass per unit time. tive growth rate may be defined as absolute growth rate / mass at the strength of the strength	:	vorking in
Relat Relat a With each	ncrease in mass per unit time. tive growth rate may be defined as absolute growth rate / mass at the streference to Table 8.1 and these case, the absolute growth rate of the tese.	start of the time. definitions, calculate, showing your v	
ir Relat a Vith each	ncrease in mass per unit time. tive growth rate may be defined as absolute growth rate / mass at the streference to Table 8.1 and these case, the absolute growth rate of the tese.	estart of the time. definitions, calculate, showing your vertise tis between ages 14 and 18 years;	
ir Relat Vith each i) tl	ncrease in mass per unit time. tive growth rate may be defined as absolute growth rate / mass at the streference to Table 8.1 and these case, the absolute growth rate of the test.	start of the time. definitions, calculate, showing your vitis between ages 14 and 18 years;	
ir Relat With each i) th	ncrease in mass per unit time. tive growth rate may be defined as absolute growth rate / mass at the strength of the test of	start of the time. definitions, calculate, showing your vitis between ages 14 and 18 years;	[2]

[Total: 15]

www. PapaCambridge.com

Section B Answer one question

- 9 (a) Explain how a synapse functions. [9]
 (b) Describe the role of glucagon in regulating blood glucose. [6]
 10 (a) Describe why variation is important in natural selection. [6]
 - (b) Explain the role of isolating mechanisms in the evolution of new species. [9]
 - [Total: 15]

Copyright Acknowledgements:

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.