www.PapaCambridge.com

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Level

MARK SCHEME for the June 2005 question paper

9701 CHEMISTRY

9701/04

Paper 4 (Structured Questions A2 Core), maximum raw mark 60

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the *Report on the Examination*.

• CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the June 2005 question papers for most IGCSE and GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

www.PapaCambridge.com

Grade thresholds for Syllabus 9701 (Chemistry) in the June 2005 examination.

	maximum	minimum mark required for grade:			
	mark available	А	В	Е	
Component 4	60	45	40	22	

The thresholds (minimum marks) for Grades C and D are normally set by dividing the mark range between the B and the E thresholds into three. For example, if the difference between the B and the E threshold is 24 marks, the C threshold is set 8 marks below the B threshold and the D threshold is set another 8 marks down. If dividing the interval by three results in a fraction of a mark, then the threshold is normally rounded down.

June 2005

www.PapaCambridge.com

GCE A LEVEL

MARK SCHEME

MAXIMUM MARK: 60

SYLLABUS/COMPONENT: 9701/04

CHEMISTRY
Paper 4 (Structured Questions A2 Core)

Page 1		Mark Scheme S		Syllab			
			A LEVEL – JUNE 2005	9701	02		
1	(a)	(i)	Ammeter/galvanometer	Syllab 9701	Cal		
			Clock/watch/timer (or rheostat) (For items above 2 in number, e.g. voltmeter, pena		[1]		
		(ii)	Diagram to show ammeter (allow symbol) in circuit, and complete circuit with ⊖ terminal of power pack connected to LH				
			electrode		[1]		
		(iii)	Volume/amount of hydrogen/gas		[1]		
			Time		[1]		
			Current/amps/ammeter reading (ignore extra measurements)		[1]		
				Part (a)	: [7]		
	(b)	(i)	F = L x e		[1]		
		(ii)	L = $9.63 \times 10^4/1.6 \times 10^{-19} = 6.02 \times 10^{23}$ (must show	working)	[1]		
			Allow 6.0 but not 6 or 6.01	Part (b)	: [2]		
				Total	l: [9]		
2	(a)		The power/index/exponent to which a concentra a rate equation	tion term is rais	sed in		
			or $^{\rm a}$ in rate = ${\bf k}[{\rm A}]^{\rm a}$ (k is needed – or can use rate $lpha$	[A] ^a)	[1]		
				Part (a)): [1]		
	(b)	(i)	1 st order w.r.t. propanone		[1]		
			Zero order w.r.t. H ⁺ ions		[1]		

	1 st order w.r.t. CN ⁻ ions		
(ii)	Rate = k [propanone][CN ⁻]	(e.c.f. from (i))	[1]
(iii)	Mechanism B (or A – see grid below), with the first (or second – see grid below) step being the slow step,		
	(since H ⁺ does not appear in rate equation) it must be involved after the slow step or [H ⁺] is not involved in slow step		

Grid for e.c.f. in first mark of (iii)

Deductions in (i) or (ii)			E.C.F. deductions in (iii)		
[Propanone] [CN ⁻] [[H ⁺]	Mechanism	Slow step	
1	1	0	В	1 st	
1	0	1	Α	1 st	
1	1	1	A or B	2 nd	
Any other			No e.c.f. mark can be awarded		

		2	
Page 2	Mark Scheme	Syllab	V.
	A LEVEL – JUNE 2005	9701	80

3 (a) (i) It is an endothermic reaction, or taking in heat $It \ has \ a \ high \ activation \ energy/E_a$

- [1]
- (ii) MgCO₃ will decompose at a **lower** temperature/needs less energy [1]
 - ${\rm Mg}^{2^+}$ is a smaller (ion) than ${\rm Ca}^{2^+}$ or ${\rm Mg}^{2^+}$ has high charge density [1]

So polarises/distorts the anion CO_3^{2-} ion more easily [or LE(MgO) > LE(CaO)]

Part (a): [5]

[1]

(b)
$$\Delta H = 82 - 178 = -96 \text{ (kJ mol}^{-1})$$
 [1]

Part (b): [1]

(c)
$$[CaMg(CO_3)_2 \longrightarrow CaO + MgO + 2CO_2]$$

$$M_r(CaMg(CO_3)_2) = 40.1 + 24.3 + 24 + 96 = 184.4$$
 [1]
$$M_r(2CO_2) = 2 \times 44 = \textbf{88}$$

∴% loss in mass =
$$100 \times \frac{88}{184.4} = 47.7\%$$
 (e.c.f. in 184.4) [1] Allow 48%. Also allow 48.8% if M_r = 184

Part (c): [2]

Total: [8]

Pa	age 3		Mark Scheme	Syllab
			A LEVEL – JUNE 2005	9701
4	(a)	(i)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁶ 4s ² or [Ar] 3d ⁶ 4s ²	Cambrid
		(ii)	Coloured compounds/ions/solutions/ppts; parama oxidation state/valency/more than one ion; dense melting point metals; are catalysts; form complexe	metals; high

- $1s^22s^22p^63s^23p^63d^64s^2$ or [Ar] $3d^64s^2$ (i) 4 (a)
 - (ii) Coloured compounds/ions/solutions/ppts; paramagnetic; variable oxidation state/valency/more than one ion; dense metals; high melting point metals; are catalysts; form complexes (ANY 2) [1] + [1]

Part (a): [3]

(b) (i)
$$MnO_4^- + 8H^+ + 5Fe^{2+} \rightarrow Mn^{2+} + 4H_2O + 5Fe^{3+}$$
 [1]

$$E^{\circ} = 1.52 - 0.77 = 0.75 \text{V}$$
 (allow e.c.f. 0.90V for MnO₂ [1]

- (ii) MnO₄ is purple/**highly** coloured [1]
 - End point is **first** (permanent) pink colour **or** colourless-to-pink (Allow yellow-to-pink but **not** purple-to-pink) [1]

Part (b): [4]

- (c) Water molecules are ligands, in that they coordinate/form dative bonds (to the Fe ion) with their (lone) pairs of electrons or lone pairs are donated. [1]
 - A complex ion is an ion/Fe³⁺ surrounded by/joined to ligands or $[Fe(H_2O)_6]^{3+}$ [1]

Part (c): [2]

- (d) Haemoglobin transports oxygen in the **blood or** from **lungs** (to tissues) (i)
 - CO forms stronger bonds to Hb/Fe²⁺ than does O₂ or CO has higher (ii) affinity or bonds irreversibly or forms more stable complex [1]

Part (d): [2]

(e) Reagent:
$$I_2 + OH^-$$

Observations - ethanol: yellow ppt./antiseptic smell; methanol: no change [1]

Part (e): [2]

Total: [13]

A LEVEL – JUNE 2005 9701	-
	200
	10
Part (a): [1]
(b) (i) The more chlorine atoms in the molecule, the stronger the acid,	[1]
 eitherstabilising the anion, or spreading (-) charge more, orweakening the O-H bond in the acid, orincreasing ionisation orfacilitates H⁺ donation 	า,
orcausing the equilibrium RCO₂H ⇒ RCO₂⁻ + H⁺ to lie further to	
the right. Mark is conditional on reference to the effect of presence of chlorine.	[1]
(ii) $[H^+] = \sqrt{(0.1 \times 1.4 \times 10^{-3})} = 0.0118 \text{ (mol dm}^{-3}) \text{ allow } 0.012$	[1]
\therefore pH = -log ₁₀ (0.0118) = 1.93 Allow 1.9 or 1.92 e.c.f.	[1]
(iii) $pK_a = -log_{10}(5.5 \times 10^{-2}) = 1.26$ Allow 1.3	[1]
Part (b): [6]
(c) (i) $Cl_2(\mathbf{aq}) AlCl_3$ or UV negates	[1]
(ii) Electrophilic substitution or addition-elimination	[1]
Nucleophilic substitution or electrophilic substitution on OH group If neither mark is awarded, could give "salvage" mark for	
substitution x2	[1]
(iii) Either: add Br ₂ (aq) phenol decolourises it, or gives a white or: add FeC l ₃ (aq) phenol give a purple colour or: add NaOH(aq) phenol dissolves or: add UI solution phenol goes yellow/orange (A stays gre or: add "diazonium" to solution in OH	
phenol gives orange/red colour (in each case, A give no reaction)	
or: add $Cr_2O_7^{2-}/H^+/w$ arm A changes colour from orange to go add $MnO_4^-/H^+/w$ arm A changes from purple to colourle or: add $PCl_5/POCl_3/PCl_3/SOCl_2$ A gives fumes or: add CH_3CO_2H + conc. H_2SO_4 A gives fruity smell	SS
(in each case, no change with phenol)	

Part (c): [5]

Total: [12]

Page 5			Mark Scheme	Syllab	1
			A LEVEL – JUNE 2005	9701	Back
6	(a)	(i)	Electrophilic substitution or nitration		apacan,
		(ii)	$HNO_3 + H_2SO_4$		[1]
			(both) conc., and at 50°C ≤ T ≤ 60°C		[1]
		(iii)	NO_2^+		[1]
			H NO ₂ H NO ₂		
			etc. or		
			Any ⊕ on NO₂ or H negates		[1]
			H⁺		[1]
				Part (a	ı): [6]
	(b)	(i)	Reduction		[1]
		(ii)	Sn/Fe/Zn/SnC l_2 + HC l /H $^+$ /H $_2$ SO $_4$ (but not conc. H $_2$ S or H $_2$ + Ni/Pt (not LiA l H $_4$)	SO ₄)	[1]
				Part (b): [2]
	(c)		$PCl_5/PCl_3/SOCl_2/POCl_3$ (+ heat) aq negar	tes	[1]
				Part (c	:): [1]
	(d)	(i)	An amide, not peptide		[1]
		(ii)	Heat with H₃O ⁺ or heat with OH⁻(aq)		

Or warm (**not** heat/reflux) with aqueous amidase/peptidase/protease **not** enzyme/trypsin/chymotrysin/pepsin/papain etc. [1]

Part (d): [2]

Total: [11]