UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Level

MARK SCHEME for the June 2005 question paper

9701 CHEMISTRY

www.papacambridge.com

9701/06

Paper 6 (Options), maximum raw mark 40

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the *Report on the Examination*.

• CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the June 2005 question papers for most IGCSE and GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Grade thresholds for Syllabus 9701 (Chemistry) in the June 2005 examination.

				MAN .	R
resholds for Sylla	abus 9701 (Che	emistry) in the	June 2005 ex	amination.	Aa Cambrid
	mark available	A	В	E	Se.con
Component 6	40	23	20	11	

The thresholds (minimum marks) for Grades C and D are normally set by dividing the mark range between the B and the E thresholds into three. For example, if the difference between the B and the E threshold is 24 marks, the C threshold is set 8 marks below the B threshold and the D threshold is set another 8 marks down. If dividing the interval by three results in a fraction of a mark, then the threshold is normally rounded down.

June 2005

GCE A LEVEL

MARK SCHEME

MAXIMUM MARK: 40

SYLLABUS/COMPONENT: 9701/06

CHEMISTRY Paper 6 (Options)

Page 2	Mark Scheme Sylla.	S.
	A LEVEL – June 2005 9701	NaC.
(a)	(i) T is present in DNA not RNA (or U present in RNA)	ambric
	DNA is double helix/RNA usually single strand	(1)
	(ii) X is deoxyribose	(1)
	Y is phosphate/phosphorus	(1) [4]
(b) :	Since A is 29%, T must also be 29%	(1)
($G = C = \frac{(100 - 58)}{2} = 21\%$	(1) [2]
(c)	Sequence of 3 bases in m-RNA/triplet code/codon	(1)
(Corresponds to a particular amino acid	(1)
I	m-RNA is complementary to section of 1 strand of DNA1	(1)
I	Base sequence of m-RNA/DNA determines the primary structure	(1)
(Other codons are for initiation or termination	(1)
		[4 max]
		[Total: 10]

			M. L.O.L.	40	1
	Page 3	\$	Mark SchemeSyllaA LEVEL – June 20059701	apa	
Env	vironme	ental	Chemistry	Call.	26
3	(a)	For	mation of photochemical smog	(1)	Tidge
		Con	npounds irritate mucous membranes/respiratory system	(1)	.con
		Pho	tosynthesis is adversely affected	(1)	
		Incr	eases 'greenhouse effect'	(1) [Any 2]	
	(b)	NO	+ $O_3 \rightarrow NO_2 + O_2$		
		O ₃ NO ₂	$ \rightarrow O \bullet + O_2 \qquad 3 \text{ eqns => 2 marks} \\ 2 \text{ eqns => 1 mark} \\ 2 \text{ eqns => 1 mark} $	(2)	
		NO	is regenerated in the third reaction so reaction continues	(1)	[3]
	(c)	(i)	O_3 + $H_2O \rightarrow O_2$ + 2 OH • (or other sensible eqns)	(1)	
		(ii)	NO is used up thus preventing the continued destruction of ozone	e (1)	
			OH• is regenerated so the reaction continues	(1)	
			Some comment about hydrocarbons providing an alternative oxidation pathway without using ozone	(1)	
		(iii)	HCHO or NO ₂	(1)	[5]
				[Total:	10]
4	(a)	O ₂	+ $4H^+$ + $4e^- \Rightarrow 2H_2O E^{\circ} = 1.23 V$	(1)	[1]
	(b)	The	e oxygen concentration is lower	(1)	
		The	pH is higher	(1)	[2]
	(c)	(i)	Increase in the pH of the soil affects the half-cell reaction	(1)	
			Waterlogging reduces oxygen circulation	(1)	
		(ii)	$Fe^{3+} + e^{-} \Rightarrow Fe^{2+} E^{9} = 0.77 V$	(1)	
			In normal soil the E° drops from 1.23 V to 0.83 V, any further drop takes it below that in the half-equation above) (1)	[4]

		422		
Page 4	ļ	Mark Scheme Sylla.]
		A LEVEL – June 2005 9701	Da	
(d)	(i)	Extreme reducing conditions produce hydrogen sulphide	-all	brid
		SO_4^{2-} + 10H ⁺ + 8e ⁻ \Rightarrow H ₂ S + 4H ₂ O	(1)	.96
	(ii)	Hydrogen sulphide will gradually kill plants as it reacts with iron	(1)	[3]
			[Total:	10]
Phase Equ	ıilibri	a		
5 (a)	(i)	The mass of gas which dissolves in a given volume of solvent at a particular temperature, is proportional to the pressure of the gas	(1)	
	(ii)	24 dm ³ of oxygen weighs 32 g Hence 0.2 dm ³ of oxygen weighs $\frac{0.2 \times 32}{24}$ = 0.267 g	(1)	
	(iii)	Volume of oxygen = $0.031 \times 10^3 = 31 \text{ cm}^3$ Thus the mass of oxygen = $\frac{31 \times 32}{24000} = 0.041(3) \text{ g}$	(1)	[3]
(b)	Her spe	nry's Law only holds at a given temp and when the same (molecular) ecies are present in both gas and liquid phases	(1)	
	The	e blood will not be at the same temperature as the atmosphere	(1)	
	In b	blood the oxygen is present as O_2 - haemoglobin complex	(1)	
	CO	₂ reacts with blood	(1)	[4]
(c)	(i)	Mass of O ₂ = 5 x 5 x 0.0413 = 1.03 g	(1)	
	(ii)	Oxygen will not form bubbles as it combines with haemoglobin,	(1)	
		hence the gas is nitrogen	(1)	
		CO_2 reacts with blood/forms H_2CO_3 /forms H^+ and HCO_3^-	(1)	[4]

[Total: 10]

Page 5	Mark Scheme	Sylla.	
	A LEVEL – June 2005	9701 20	
(a)		Cal	76
(u)	Tenzdature		1%
	12		00
	320		
	300	•	
	2%0		
	240 higuid Gd/Si		
	240		
	21.0		
	200 Selil B:		
	iso thermit solid Ch		
	160 + Want		
	Solid Di and solid Col		
	Si composition/mano (4.7. Ca		
		2205 (1)	
		points and lines (1)	
		labels of 3 areas (1)	
			[3]
(b)	(i) 140 °C/eutectic temperature	(1)	
()		(-)	
	(ii) 41% Cd (eutectic)	(1)	[2]
(c)	The liquid is $66 \pm 2\%$ Cd	(1)	
	The solid is cadmium, and there is 80 a of it	(1) (1)	[3]
		(-)	6 - J
(d)	Two valid explanations e.g.		
	The motels have different etemic red"		
	THE MELAIS HAVE UMELENT ALUMUC TAUN		

Different electronic arrangement giving different colourThe lattice structure of the alloy is different/disrupted2 x (1) [2]

[Total: 10]

Page 6	Mark Scheme Sylla	.0
	A LEVEL – June 2005 9701	10gg
ctroscop	ру	annb.
(a)	Addition of ligands causes splitting of d-orbitals	(1)
	Electron(s) are promoted from lower to higher energy orbitals	(1)
	Energy is absorbed	(1)
	This is in the visible region	(1) [4]
(b)	Green/turquoise/cyan	(1)
	Minimum energy absorbed is at 400 nm and above 600 nm (Accept in blue and red parts of spectrum)	
	or colour is compliment of energy absorbed	(1) [2]
(c)	(i) $n \rightarrow \sigma^*$	(1)
	(ii) π → π *	(1)
	(iii) $\pi \rightarrow \pi^*$, $n \rightarrow \sigma^*$, $n \rightarrow \pi^*$ $3 \rightarrow 2, 2 \rightarrow 1, 1 \rightarrow 0$	(2) [4]
		[Total: 10]

Page 7	Mark Scheme A LEVEL – June 2005	Sylla 9701 90
om mass spect	um	a Canny
<i>M</i> _r of Y is 210 M : M + 1 =	0.65 : 0.11	oridge
No of carbons	s present = $0.11 \times \frac{100 = 15}{0.65 \times 1.1}$	(1)
From nmr sp	ectrum	
There are onl	y two types of proton present	(1)
Since <i>M</i> _r of Y	is 210, this suggests $C_{15}H_{14}O$	(1)
Absorption at	7.2 δ suggests C_6H_5 - groups	(1)
This leaves -0	CH ₂ - groups	(1)
C=O is centra	l/between CH ₂ groups	(1)
From ir spec	trum	
Strong absorp	otion at 1720 cm ⁻¹ suggests C=O	(1)
There is no cl	naracteristic -OH absorption	(1)
There is no cl	naracteristic -C-O absorption	(1)
Y is likely to b	e ()- cH2- C-CH2-()	(1)
Additional p	ossible marks from mass spectrum	
91 -	O- cnt	(1)
119 -	Con all t	(1)

 $28 - C^+ = O$ (1)

[Total: max 10]

		NYA.		-
	Page 8	Mark Scheme Sylla A LEVEL – June 2005 9701	02	
Tra	nsition	Elements	Cal	2
9	(a)	occurs as cobalamine/vitamin B ₁₂	(1)	Tides
		which is needed to prevent pernicious anaemia <u>or</u> used to synthesise amino acids <u>or</u> carbon-carbon bonds etc.	(1)	[2]
	(b)	(i) E^{e} for Co^{3+}/Co^{2+} is + 1.82V E^{e} for O_2/OH^{-} is -0.40V	(1)	
		O_2 is not strong enough to oxidise $Co^{2+}(aq)$, but is more positive than $E^{\circ}([Co(NH_3)_6]^{3+}/[Co(NH_3)_6]^{2+})$, so oxidation occurs.	(1)	
		(ii) E^{e} for $Co^{3^{+}}/Co^{2^{+}}$ is + 1.82V E^{e} for $Cr_{2}O_{7}^{2^{-}}/Cr^{3^{+}}$ is + 1.33V	(1)	
		so oxidation from green (Cr^{3+}) to orange ($Cr_2O_7^{2-}$) will occur $6Co^{3+} + 2Cr^{3+} + 7H_2O \longrightarrow 6Co^{2+} + Cr_2O_7^{2-} + 14H^+$	(1) (1)	[5]
	(c)	To make stainless steel/chromium plating/nichrome wire	(1)	[1]
	(d)	$(NH_4)_2Cr_2O_7 \longrightarrow N_2 + 4H_2O + Cr_2O_3$	(1)	
		gases are N ₂ + steam	(1)	[2]
			[Total	: 10]
0	(a)	both zinc and copper dissolve at the anode:	(1)	
		$\begin{array}{cccc} Cu &-& 2e^{-} &\longrightarrow & Cu^{2^{+}}(aq) \\ Zn &-& 2e^{-} &\longrightarrow & Zn^{2^{+}}(aq) \end{array} \hspace{1cm} (both) \end{array}$	(1)	
		copper is preferentially discharged at the cathode <u>or</u> $Cu^{2+} + 2e^{-} \longrightarrow Cu(s)$	(1)	
		$E^{\circ}(Cu^{2+}/Cu) = +0.34V$ $E^{\circ}(Zn^{2+}/Zn) = -0.76V$ hence zinc remains in solution	(1)	[4]
	(b)	aldehydes <u>reduce</u> Cu(II) to Cu(I) <u>not</u> Cu	(1)	
		$\begin{array}{rcl} RCHO &+& 2Cu^{2^{+}} &+& 5OH^{-} &\longrightarrow & RCO_2^{-} &+& Cu_2O &+& 3H_2O \\ \underline{or} & 2Cu^{2^{+}} &+& 2OH^{-} &+& 2e^{-} &\longrightarrow & Cu_2O &+& H_2O \end{array}$	(1)	
		Cu ₂ O forms a (brick) red ppt.	(1)	[3]

