MARK SCHEME for the May/June 2006 question paper

9701 CHEMISTRY
 9701/06 Paper 6
 Maximum raw mark 40

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published Report on the Examination.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the Report on the Examination.

The minimum marks in these components needed for various grades were previously published with these mark schemes, but are now instead included in the Report on the Examination for this session.

- CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2006 question papers for most IGCSE and GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 1	Mark Scheme	Sylir
	GCE A/AS Level - May/June 2006	9701

Biochemistry

1 (a) (i)

Displayed structure
One peptide linkage shown [1]
(ii) Condensation
(b) (i) Weak intermolecular forces of attraction (1) Van der Waals (1)
(ii) No attraction/ffinity for water [1]

Non-polar structure
(c) (i) Both contain the polyamide structure/-CONH-
(ii) Bullet proof vests ; body armour; ropes; airbags; kayaks; gloves; skis;
run-flat tyres; shields for jet engines; helmets; racquets; clothing any one [1]

2 (a) Diagram:
R end - van der Waals forces [1]
Phosphate end - ionic/polar
(b) (i) van der Waals interactions/dipole -dipole interactions/temporary dipoles/hydrophobic interactions
with the hydrocarbon part of the bilayer
(ii) Disrupt it/distort it/weakens the interactions between the bilayers
(c) K^{+}moves into cell, Na^{+}moves out of cell
This occurs by active transport [1]
ATP/adenosine triphosphate provides the energy [1]
Integral proteins in the membrane are used[1] [4]

Environmental Chemistry

3 (a) $\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HOCl}+\mathrm{HCl} / \mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O}=\mathrm{ClO}^{-}+2 \mathrm{H}^{+}+\mathrm{C} t$
$\mathrm{HOCl} l$ is an oxidising agent which kills bacteria/ ClO^{-}is an oxidising agent which kills bacteria
(b) Dissolved chlorine will react with organic pollutants in water
(c) (i) Water softener/removes magnesium or calcium ions from water (as insoluble magnesium or calcium phosphate)
(ii) Phosphate encourages growth of algae and bacteria to form an algal bloom

$$
\begin{aligned}
& \text { Algal bloom prevents sunlight from reaching plants lower down in water so } \\
& \text { they stop photosynthesising and die }
\end{aligned}
$$

Bacteria feeding on dead plants multiply and their respiration uses up all the
available dissolved oxygen
(iii) $\mathrm{Al}^{3+}+\mathrm{PO}_{4}{ }^{3-} \rightarrow \mathrm{AlPO}_{4}$

Moles of $\mathrm{AlPO}_{4}=4.00 /$ ecf from wrong formula or molar ratio
Concentration $=0.004 \mathrm{~mol} \mathrm{dm}^{-3} /$ ecf from wrong number of moles
$\mathrm{Si}_{2} \mathrm{AlO}_{9}{ }^{7-}$
4 (a) (i) $\mathrm{Si}_{2} \mathrm{AlO}_{9}{ }^{7-}$
(ii) Cations can be adsorbed onto surface of clay/attraction between the negative clay and the cation

Plants need certain cations such as potassium and by attraction to clay they
cannot be washed out of soil easily
1] [3]
(b) (i) Any two from

Hydrogen ions adsorbed onto surface of clay / attraction between hydrogen ion and negative clay

$$
\begin{aligned}
& \text { Some cations attached to clay can raise } \mathrm{pH} \text { because cation is replaced by } \\
& \text { proton from water }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Other cations such as aluminium can lower } \mathrm{pH} \text { when replaced by hydrogen } \\
& \text { ion from water }
\end{aligned}
$$

(ii) If H^{+}is low $\mathrm{RCO}_{2} \mathrm{H}$ dissociates to produce $\mathrm{H}^{+} /$dissociation equilibrium moves
to the right If $\left[\mathrm{H}^{+}\right]$is high $\mathrm{RCO}_{2} \mathrm{H}$ forms $\mathrm{RCO}_{2} \mathrm{H}_{2}{ }^{+}$
(c) Any three from

Liming involves adding calcium hydroxide or calcium carbonate to soil
$\mathrm{OH}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{H}_{2} \mathrm{O} / \mathrm{CO}_{3}{ }^{2-}+\mathrm{H}^{+} \rightarrow \mathrm{HCO}_{3}{ }^{-} /$more complex equations involving clay [1]
Can reduce nitrogen content of the soil/ $/ \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}$
Efficiency of liming reduced by acid surges caused by melting of ice containing acidic water
Page 3 Mark Scheme

Phase Equilibria

5 (a) (i) V.P. of $\mathbf{A}=$ vapour pressure of A on own x mol fr. of \mathbf{A} $O R P_{A}=P_{A} x_{A}$
(ii) $0.3 \times 48=14.4$
$0.7 \times 36=25.2$
(iii) Raoult's law obeyed
components are similar/ideal mixture/components not interact
(b) (i) Molecules attract each other OR dipoles align Stronger intermolecular forces than components

OR Interact in 1:1 ratio
(c) pure propanone
since this has lowest b.p. OR highest VP
OR is most volatile
(allow discussion of b.p./composition curves)

Then azeotrope or 0.50 composition
[1] [3]

Page 4 Mark Scheme

6 (a)

both axes
solid/liquid slope
areas
T.P. (1) values or label
shape
(b) (i) line drawn at 298 K or indicated
value of 60 atm indicated
[Explanation without ref to diagram only scores [1]]
(ii) CO_{2} expands from over 60 atm to 1 atm cools
to below triplet point, explains solid
(c) The solid/liquid line has a positive slope for CO_{2} rather than the negative slope of water

Page 5	Mark Scheme
	GCE A/AS Level - May/June 2
Spectroscopy	

7 (a) Two absorptions
Asymmetric bend (or diagram)
Asymmetric stretch (or diagram)
(b) (i) $1710 \mathrm{~cm}^{-1}-\mathrm{C}=\mathrm{O}$ $2260 \mathrm{~cm}^{-1}-\mathrm{C} \equiv \mathrm{N}$
(ii) $\mathrm{NC}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CO}_{2} \mathrm{H}$
(c) Nmr

+ indication of absorptions $\left(\mathrm{CH}_{2} \sim 1.3\right.$ ठ, $\left.-\mathrm{O}-\mathrm{H} \sim 4.5 \delta\right)$
OR Mass spectrometry
+ two examples of likely fragmentations e.g. M-28 (loss of CN) and M -17 (loss of -OH)

$$
[2 \times 1]
$$

8 (a) Structure II
A peak at $3450 \mathrm{~cm}^{-1}$ is characteristic of -OH would be seen for structure II
(b) (i) Triplet-quartet is characteristic of a CH_{3} next to CH_{2} group

Standard 1,3,3,1 and 1,2,1 diagrams
(ii) Singlet (1) at $82.0-3.8$ (1)
(iii) Deuterium oxide will exchange protons with -OH group in structure II

Since deuterium does not absorb in this part of the spectrum the - OH peak would disappear
(c) Structure II will show $(\mathrm{M}-17)^{+}$- loss of OH

Structure I will show ($\mathrm{M}-31$) ${ }^{+}$loss of $\mathrm{CH}_{3} \mathrm{O}$
Structure II will show (M-43) ${ }^{+}$loss of $\mathrm{C}_{3} \mathrm{H}_{7}$

Page 6	Mark Scheme	Sylla
	GCE A/AS Level - May/June 2006	970

Transitions Elements

9 (a) (i) somewhere between 4% and 20% chromium
(ii) Cr forms its oxide $/ \mathrm{Cr}_{2} \mathrm{O}_{3}$ on the steel's surface which is impermeable to oxygen/hard
(b) (i) $\mathrm{Cr}=33.6 / 52=0.646$
$\mathrm{O}=20.6 / 16=1.288$
$C l=45.8 / 35.5=1.290$
thus \mathbf{A} is $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$
O.N. of chromium $=+6$
(ii) orange solution contains $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$
$2 \mathrm{CrO}_{2} \mathrm{Cl}_{2}+3 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+6 \mathrm{H}^{+}+4 \mathrm{C} t$
white ppte is AgCl or $\mathrm{Ag}^{+}+\mathrm{Cl} \longrightarrow \mathrm{AgCl}(\mathrm{s})$
yellow solution contains $\mathrm{CrO}_{4}{ }^{2-}$

$$
\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+2 \mathrm{OH}^{-} \longrightarrow 2 \mathrm{CrO}_{4}{ }^{2-}+\mathrm{H}_{2} \mathrm{O}
$$

10 (a) colour dues to absorption of visible light
d-orbitals are split into two sets at different energies
photon is absorbed when an electron is promoted to higher orbital
(b) (i) $\left[\mathrm{Fe}(\mathrm{SCN}]^{2+}\right.$ is formed - this is red
F^{-}is a stronger ligand than SCN^{-}or ligand exchange occurs
$\left[\mathrm{FeF}_{6}\right]^{3-}$ is colourless or energy gap between d-orbitals is large
(ii) reduction occurs
to VO^{2+} (which is blue)
$\mathrm{SO}_{2}+4 \mathrm{H}^{+}+2 \mathrm{VO}_{3}{ }^{-} \longrightarrow \mathrm{SO}_{4}{ }^{2-}+2 \mathrm{VO}^{2+}+2 \mathrm{H}_{2} \mathrm{O}$
(further reduction to) V^{3+} (which is green)
$\mathrm{Sn}^{2+}+4 \mathrm{H}^{+}+2 \mathrm{VO}^{2+} \longrightarrow \mathrm{Sn}^{4+}+2 \mathrm{~V}^{3+}+2 \mathrm{H}_{2} \mathrm{O}$

