

www.papacambridge.com MARK SCHEME for the May/June 2007 guestion paper

9701 CHEMISTRY

9701/02

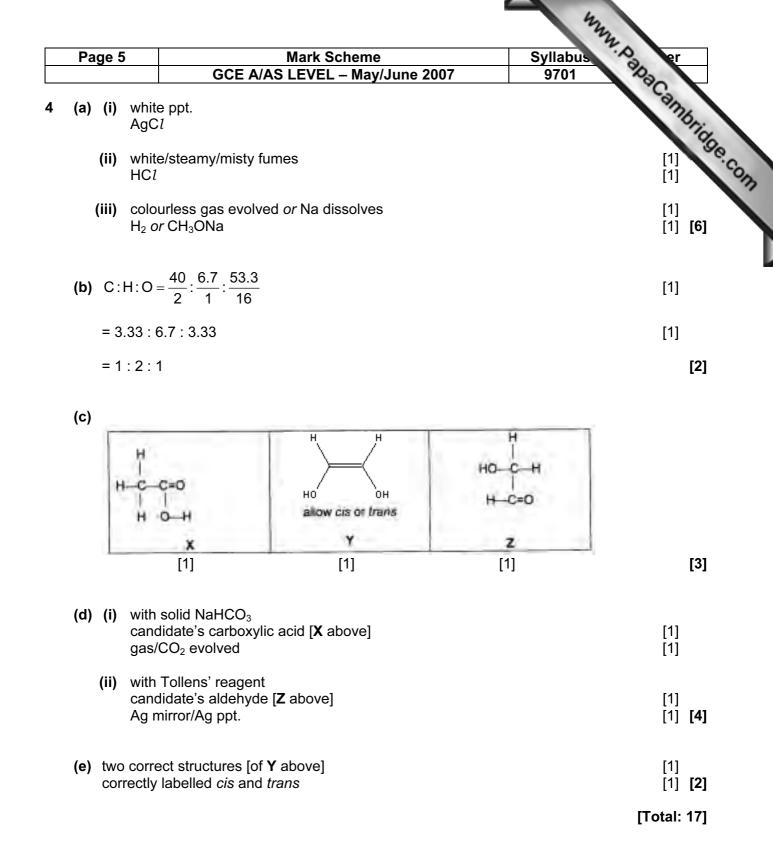
Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

CIE will not enter into discussions or correspondence in connection with these mark schemes.


CIE is publishing the mark schemes for the May/June 2007 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme GCE A/AS LEVEL – May/June 2007	Syllabus of er 9701
(a) (i) b	petween 117° and 120°	Syllabus 9701 Anacambridge.
(ii)		onido
× 7	Ho"N "N" H	S.G.
	ਜ ਸ	
	4 electrons must be shown	
	ingle N-N bond one pair on each N atom	[1] [1]
(iii) b	petween 107° and 109°	[1] [4]
• •	ne – van der Waals' forces	[1]
-	azine – hydrogen bonds	[1]
	ogen bonds are stronger n der Waals' forces are weaker	[1] [3]
(-)	at divela as O I Land N. Li banda	[4]
	ct dipole on O—H and N—H bonds	[1]
	ed hydrogen bond shown een an O atom of H₂O and a H atom of N₂H₄	
	tween an N atom of N_2H_4 and a H atom of H_2O	[1]
lone p	pair on O atom <i>or</i> on N atom <i>in the H bond</i>	
i.e.	-N:H-O	
	or	
	D. MARTIN H. N.	[1] [3]
	-91 0-0-0-	
(d) (i) C	$CH_2 = CH_2 + HCl \rightarrow CH_3CH_2Cl$	[1]
(ii) e	electrophilic addition	[1]
· · ·	here is no further unsaturation	
o	or CH ₃ CH ₂ C <i>1</i> molecule is saturated or no possibility of addition	
O	or no free radicals are present	[1] [3]
(e) (i) a	acid – base/neutralization	[1]
	Natom has a lone pair of electrons or Natom can behave as a base	
	or N atom can form dative bond	[1]
	each N atom has a lone pair or each nitrogen atom can behave as a base	
	or each nitrogen atom can form a dative bond	[1] [3]
C		

Pa	Page 3 Mark Scheme Syllabus									
2 (a)	age 3 Mark Scheme Syllabus GCE A/AS LEVEL – May/June 2007 9701 rate of forward reaction equals rate of backward reaction or equilibrium concentrations remain constant while reaction is occurring Image: CH CO C H][H O]									
(b)	$K_{C} = \frac{[CH_{3}CO_{2}]}{[CH_{3}CO_{2}]}$	₂ C ₂ H ₅][H ₂ O] ₂ H][C ₂ H ₅ OH]					[1]			
(c)	CH ₃ CO ₂ H + C ₂	$_{2}H_{5}OH \Rightarrow CH_{2}$	₃ CO ₂ C ₂ H ₅ + I	H ₂ O						
	initial moles	0.5	0.5	0.1	0.1					
	equil. moles	(0.5 – <i>x</i>)	(0.5 – <i>x</i>)	(0.1 + <i>x</i>)	(0.1 + <i>x</i>)		[1]			
	equil. concn./ mol dm ⁻³	$\frac{(0.5-x)}{V}$	$\frac{(0.5-x)}{V}$	$\frac{(0.1+x)}{V}$	$\frac{(0.1+x)}{V}$					
	$K_c = \frac{(0.1+x)^2}{(0.5-x)^2}$	$\frac{1}{2} = 4$					[1]			
	gives <i>x</i> = 0.3						[1]			
	$n(CH_3CO_2H) = n(C_2H_5OH) = 0.2$ and									
	$n(CH_3CO_2C_2H_5) = n(H_2O) = 0.4$									
	allow ecf on wrong equil. moles subject to $x < 0.5$									
(d)	· · · ·									
alcohol eagent(s) nd onditions		CH ₃ CH ₂ Cl	H ₂ CH ₂ OH	CH₃CH₂CH	(OH)CH₃	(CH₃)₃COH				
ed phosphorus and odine			(CH ₃ CH ₂ CH	CHCH ₃	X				
eat und	der reflux			I	[1]					
oncent	rated H ₂ SO ₄		/			CH ₃ —C=CH ₂				
eat						CH3	[1]			
r ₂ O ₇ ^{2–} /	′H ⁺	CH₃CH₂C		CH ₃ CH ₂ C		no reaction				
eat und	der reflux					no reaction	[1]			
			[1]		[1]		[1]			

[Total: 11]

Γαξ	ge 4				ark Sch					/llabus	So er	
			GUE	A/A5 LI	EVEL -	May/J	une 2007	7		9701	Paca.	
(a)		1s	2s	20	3s	30	3d	4s	<u> </u>	4d	PapaCann. [1]	6.
⊢	Са		28	2p 6	2	3p 6	0	4s 2	4p 0	4u	[1]	1900
┢	Sr ²⁻		2	6	2	6	10	2	6		ני ו [1]	
L	-										L ' J	
												[2]
(h)	/i)	more she		otrone							[1]	
	(i)					_					[1]	
	(ii)	outermos	t shell ha	as been	remove	d					[1]	
(iii)	outermos increased			rther fro	om nucl	leus/ther	e are mo	ore she	ells	[1] [1]	[4]
		110100000	i onnere	19							Γ,1	L'J
(c)	(i)		very slow reaction								[1]	
		formation	rmation of bubbles of gas								[1]	
		Mg + H ₂ C allow Mg			<u>Ч)</u> , + Н.						[1]	
	····	-				2					[1]	
	(ii)	faster rea	iction the	in with IV	lg						[1]	
			nite suspension formed evolution of gas									
			r calcium dissolves/disappears									
		Ca + 2H ₂	a + $2H_2O \rightarrow Ca(OH)_2 + H_2$									
		allow 1 m	ark in (i)) or (ii) if	qas is d	lescribe	ed as col	ourless			[1]	[7]
		-	.,		9							
(d)	(i)	gas evolved									[1]	
		gas is bro	own								[1]	
1	(ii)		$2Sr(NO_3)_2 \rightarrow 2SrO + 4NO_2 + O_2$ correct products								[1]	
		balanced	equation	n							[1]	[4]

