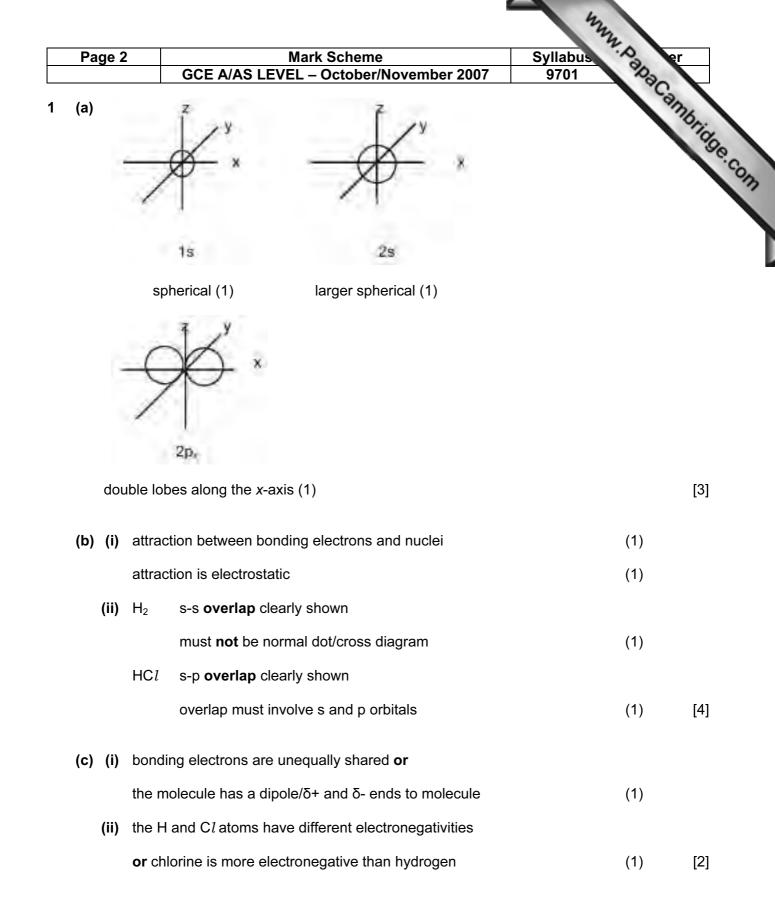
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level

www.papacambridge.com MARK SCHEME for the October/November 2007 question paper

9701 CHEMISTRY

9701/02

Paper 2 (Theory 1), maximum raw mark 60


This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

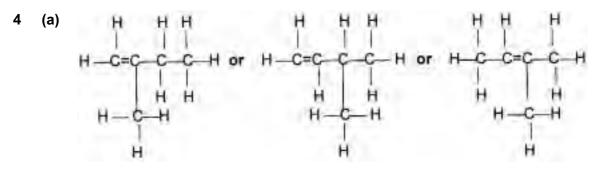
All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2007 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

			Mary No.	
Pa	ge 3	Mark Scheme	Syllabus A	er
		GCE A/AS LEVEL – October/November 2007	9701 230	
(d)	H	C C H		er Antbildge.com
	н∽	Н		
	allow tw	o 'sausages' above and below the C-C axis		-
	-	orbitals overlapping sideways one (localised) π bond over two carbon atoms	(1)	[1]
(e)	$\Delta H_{f}^{e} = 2($	(–393.7) + 2(–285.9) – (–1411)		
	= + 51.8	kJ mol ⁻¹ (units given in qu.)	(3)	
	penalise			
		no 2 for –285.9 wrong sign for –(–1411)		[3]
			[Tot	al: 13]
			-	-
2 (a)	P ₄ (s) + 1	$0Cl_2(g) \rightarrow 4PCl_5(s)$		
	or 2P(s)	$rac{1}{2} + 5Cl_2(g) \rightarrow 2PCl_5(s)$		
	equation		(1)	
	state syr	nbols	(1)	[2]
(b)	(i) gian	t ionic lattice (may be in diag.)	(1)	
(~)		ng ionic bonds		
			(1)	
		ble molecular or discrete molecules	(4)	
		y be shown in a diagram)	(1)	
		weak intermolecular forces or		
		<u>k</u> van der Waals' forces		
	betw	veen them	(1)	[4]
(c)	SiC <i>l</i> ₄ + 2	$2H_2O \rightarrow SiO_2 + 4HCl$		
	or SiC14	+ $4H_2O \rightarrow Si(OH)_4 + 4HCl$		
	or SiC14	+ $4H_2O \rightarrow SiO_2.2H_2O + 4HCl$	(1)	[1]


Pa	ge 4	Mark Scheme GCE A/AS LEVEL – October/November 2007	Syllabus Prover
			9/01 20
(d)	Na(C <i>l</i> pH is 7 allow neutral	(1) mbn
	PC	l_5 pH is between 1 and 4	19
	do I	not allow acidic	Syllabus or 9701 apacamptic (1) (1) (1) [2]
(e)	(i)	460 K Al_2Cl_6	(1)
		1150 K A <i>l</i> C <i>l</i> ₃	(1)
	(ii)	correct dot-and-cross diagram for A <i>l</i> C <i>l</i> ₃	(1)
	(iii)	correct displayed structure for Al ₂ Cl ₆	(1)
		two correct co-ordinate bonds	(1)
			[5] [Total: 14]
(a)	P ₄		(1)
	S ₈		(1)
(b)	C <i>l</i> ₂		(1) [3]
	(i)	highest S_8 P_4 Cl_2 lowest	
		allow S P Cl or names	(1)
	(ii)	from S_8 to P_4 to Cl_2	
		there are fewer electrons in each molecule	(1)
		hence weaker van der Waals' forces	(1) [3]

Page 5	Mark Scheme	Syllabus Syllabus	er
	GCE A/AS LEVEL – October/November 2007	9701 23	
(c) (i) S ₂ C	$Cl_2 = (2 \times 32.1) + (2 \times 35.5) = 135.2$		ing.
n(S	$_{2}Cl_{2}) = \frac{2.7}{135.2} = 0.0199 = 0.02$	Syllabus 9701 (1)	149e.c
0.02	2 mol S ₂ C $l_2 \rightarrow \frac{0.96}{32.1} = 0.03 \text{ mol S}$		
1.0	mol S ₂ C $l_2 \rightarrow \frac{0.03 \times 1.0}{0.02}$ = 1.5 mol S	(1)	
(iii) 2S ₂	$Cl_2 + 3H_2O \rightarrow 3S + H_2SO_3 + 4HCl$		
corr	rect products	(1)	
bala	anced equation	(1)	[4]
(d) oxidatio	n product is H ₂ SO ₃	(1)	
reductio	n product is S	(1)	[2]

[1]

(1)

H atoms must be shown.

Structure must not contain any \mbox{CH}_3 groups

 $CH_{3}CH_{2}CH(OH)CH_{2}CH_{3}$ (1) [2]

				m	
	Pa	ige 6	Mark Scheme Syllab	us *A	er
	. <u> </u>	-	GCE A/AS LEVEL – October/November 2007 9701	1 103	
	(d)		CHa correct compound	(1)	er Cambridge.com
		н	correct mirror object/mirror image relationship in 3D	(1)	[2] Conn
	(e)	5	e.g. cyclopentane structure		L
		allo	w methylcyclobutane or dimethylcyclopropane	(1)	[1]
	(f)	e.g			
		0-0-1	$H_{A} \subset_{2}H_{5} \subset H_{5} \subset_{3}H_{5}$ $- C - G - C - C - C - C - C - C - C - C $		
			repeat units must be shown ative positions of $-CH_3$ and $-C_2H_5$ may differ from those shown above	(1)	[1]
				ד]	otal: 9]
5	(a)	(i)	$Cr_2O_7^{2-}/H^+$ allow MnO_4^-/H^+	(1)	
		(ii)	from orange to or purple to colourless		
			green or green/blue	(1)	[2]
	(b)	(i)	to ensure complete oxidation of –CH ₂ OH		
			or to keep reactants in the reaction flask	(1)	
		(ii)	CH₃CHO/ethanal	(1)	[2]
	(c)	(i)	CH ₃ I/iodomethane	(1)	
		(ii)	nucleophilic substitution or hydrolysis	(1)	[2]

Page 7	Mark Scheme	Syllabus 'S	er
	GCE A/AS LEVEL – October/November 2007	9701 22	20
(d) step l			ang.
red P +	I_2 or HI(aq) or KBr/conc H ₃ PO ₄ or PI ₃	(1)	idge
heat bu t	t room temperature for PI_3	(1)	Cambridge.co
step II			
KCN in a	aqueous ethanol	(1)	
in aqueo	ous ethanol, heat under reflux	(1)	
allow aq	queous ethanol in either place		
step III			
aqueous	s mineral acid (not nitric acid)		
or NaOł	H(aq) then aqueous mineral acid	(1)	
heat		(1)	[6]