UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level

www.papacambridge.com MARK SCHEME for the October/November 2007 question paper

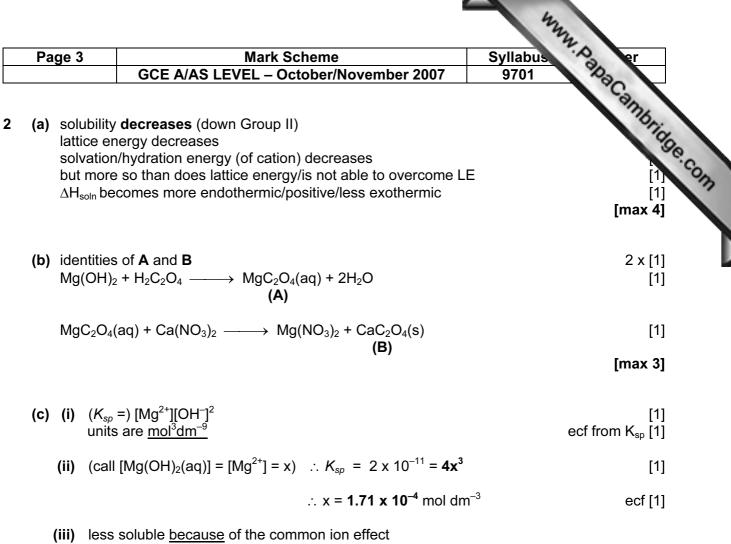
9701 CHEMISTRY

9701/04

Paper 4 (Theory 2), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

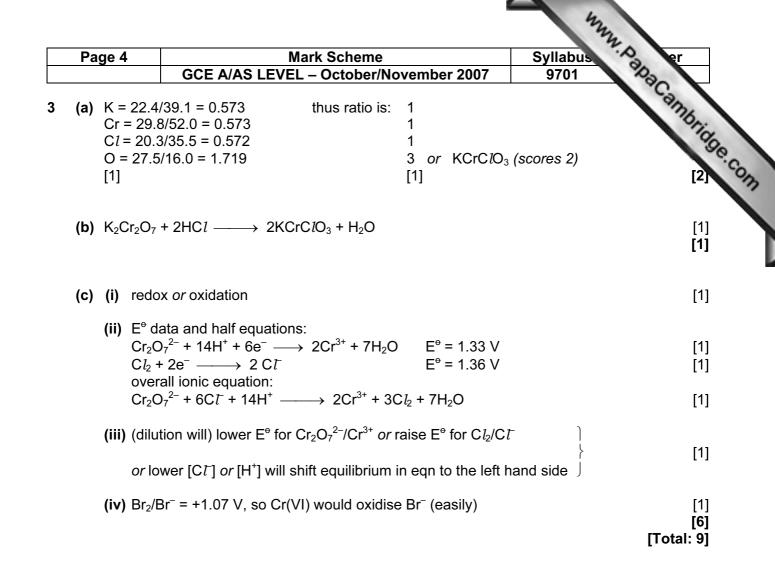
All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.


Mark schemes must be read in conjunction with the question papers and the report on the examination.

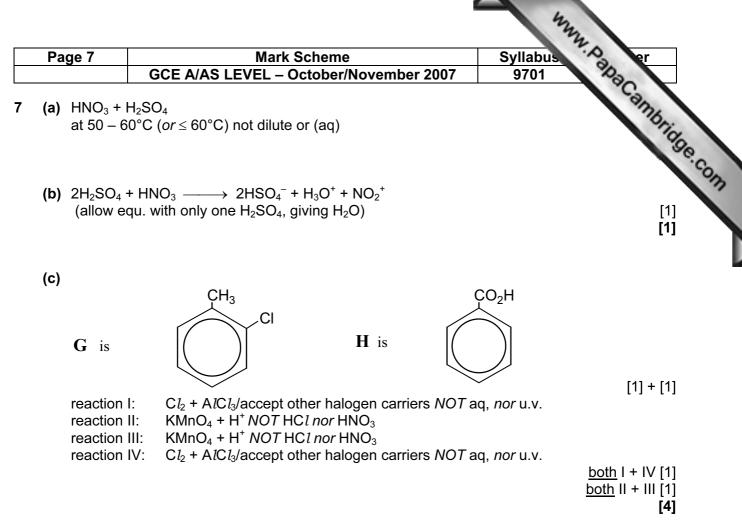
CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2007 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2	2	Mark Scheme GCE A/AS LEVEL – October/November 2007	Syllabus 74 er 9701
1	(a) (i)	K _a =	[H ⁺][RCO ₂ [−]]/[RCO ₂ H]	Canno
	(ii)	p <i>K</i> a ∹	$= -\log_{10}K_a \text{ or } -\log K_a \text{ or } \log [H^+]^2 / [RCO_2H] \text{ NOT } ln;$	Tidge
	(b) (i)	due	strength <u>increases</u> from no. 1 to no. 3 <i>or</i> down the table to the electron-withdrawing effect/electronegativity of ch ilising the anion <i>or</i> weakening the O-H bond NOT H ⁺ me	hlorine (atoms) [1]
	(ii)	chlo	rine atom is further away (from O-H) in no. 4, so has les	ss influence [1]
	(iii)		er: $pH = \frac{1}{2} (pK_a - \log_{10}[acid])$ or $K_a = 10^{-pKa} = 1.259 x$ $= \frac{1}{2} (4.9 + 2)$ $[H^+] = \sqrt{(K_a. c)} = 3.58$ = 3.4 (allow 3.5) $pH = 3.4for correct expression & values; [1] for correct working)$	x 10 ⁻³ 5 x 10 ⁻⁴ [1] ecf [1]
		([.].		[6]
	(c) (i)	cata	lyst	[1]
	(ii)	CH₃	$CH_2CO_2H + Cl_2 \longrightarrow CH_2CHClCO_2H + HCl$	[1]
	(iii)	nucl	eophilic substitution NOT addition/elimination	[1]
	(iv)	(iv) $M_r(CH_3CH_2CO_2H) = 74$ $M_r(CH_2CH(NH_2)CO_2H) = 89$ ∴ 10.0 g should give 10 x 89/74 = 12.03 g		[1]
			ercentage yield = 100 x 9.5/12.03 = 79%	ecf [1] ([2] for correct answer) [5]
	• •	-	$(CH_3)-CO_2^-$ arges on H of H ₃ N, and –COO but not –C-O-O	correct atoms [1] correct charges [1] [2]


[Total: 15]

or the equilibrium $Mg(OH)_2(s) = Mg^{2+}(aq) + 2OH^{-}(aq)$ is moved to the left [1]


[5]

[Total: 12]

Ρ	age 5		lark Scheme	Syllabus A	er
		GCE A/AS LEVE	L – October/November 2007	9701	20
(a)	no (e.g.	d-orbitals <i>or</i> available/low-l . SiC l_4 + 2H ₂ O \longrightarrow SiC GeC l_4 etc) or S or S	react (with increasing vigour)) lying empty orbitals in carbon <i>or</i> $b_2 + 4HClSi(OH)_2Cl_2Si(OH)_4bw balanced equations for partia$	unable to expand oc	pacamphique tet
(b)) (i)	E(C <i>l</i> -C <i>l</i>) = 244 kJ mol ⁻¹ ; ∴ ∆H = -436 (kJ mol ⁻¹)	2 E(C-C <i>l</i>) = 2 x 340 = 680 kJ	mol ⁻¹	[1]
	(ii)	∆H = 359 – 329 = +30 (kJ	mol ⁻¹)		[1]
	(iii)		thermic, the +4 oxidation state is s more stable (down the group)	s less stable	[1] [3] [Total: 6]
(a)	2 M	InO₄ [−] + 5 H₂O₂ + 6 H ⁺	\rightarrow 2 Mn ²⁺ + 8 H ₂ O + 5 O ₂		[1] [1]
(b)) E _{cel}	⊫ = 1.52 – 0.68 = +0.84 (V)			[1] [1]
(c)) (i)	(as KMnO ₄ is added), colo <i>or</i> effervescence/bubbles at end-point, change is to		ourless – <i>NOT</i> pink	[1] [1]
	(ii)	$n(MnO_4^-) = 0.02 \times 15/100$ since $H_2O_2 : MnO_4^- = 5:2$			[1]
		\Rightarrow n(H ₂ O ₂) = (5/2) x 3 x	x 10 ⁻⁴ = 7.5 x 10 ⁻⁴ in 25 cm ³ 000/25 = 3.0 x 10⁻² mol dm ⁻³		[1] [4] [Total: 6]

		Mary .
Page 6	Mark Scheme	Syllabus A er
6 (a) (i)	GCE A/AS LEVEL – October/November 2007 C is $O^{-}Na^{+}$ allow ONa but no covalent O-Na bo	Syllabus 9701 apacannhridge.com
(ii)	amide, ester	2 × [1]
(iii)	$CO_2 \text{ or } H_2CO_3 \text{ or } Na_2CO_3$	[1]
()	$CH_3NH_2 \text{ or } CH_3NH_3^+Ct$	[1] [1]
(iv)	H₃O ⁺ and heat >80° <i>or</i> OH⁻(aq) and heat >80°	[1] [7]
(b) (i)	Br ₂ (aq) (or other suitable solvent)	[1]
(ii)	dilute/aqueous HNO ₃	[1] [2]
(c) (i)	D is OH NO ₂	[1]
(ii)	tin/Fe + HC <i>l NOT</i> LiA <i>l</i> H₄	[1]
(iii)	mark each side chain separately	2 x [1] [4]
(d) (i)	(allow any orientation of groups)	
	penalise missing H on NH ₂	[1]
(ii)	$[Cu(NH_3)_4]^{2+}$ or $[Cu(NH_3)_4(H_2O)_2]^{2+}$ NOT $[Cu(NH_3)_6]^{2+}$	[1]
(iii)	ligand substitution/exchange	[1] [3] [Total: max 15]

[Total: 7]

Page 8	Mark Scheme GCE A/AS LEVEL – October/November 2007	Syllabus 9701	er
(a) (i) Two	o interlinked spirals <i>or</i> chains <i>or</i> strands woven round ea	ach other	amb
(ii) Byh	nydrogen bonds between bases	Syllabus 9701 ach other	Tide
(b) Transcri	ption – (1)DNA/RNA/nucleic acid unravels – (2)strand is used as a template – (3)mRNA reads the sequence on this strand/ produces complementary strand		[1] [1] [1]
Translati	ion – (4)mRNA binds to the ribosome – (5)tRNA translates the codon from mRNA – (6)tRNA carries amino acids to ribosome/adds		[1] [1] [max 4]
	uption of the secondary/tertiary/quaternary/3D structure uld be answered in terms of bonds e.g. hydrogen bonds		[1]
(ii) The	covalent/peptide bonds in the (protein) chain are too s	trong	[1] [2]
ATP (+ H	is provided by the breakdown/hydrolysis of adenosine to $H_2O) \rightarrow ADP + P_i$ (+ energy) or in words	/	[1] [1]
	produced during respiration/Krebs cycle/oxidation of glu nondria/ADP is recycled	cose, rats or proteins/	[1] [3]

Page 9	Mark Scheme	Syllabus	er
	GCE A/AS LEVEL – October/November 2007	9701	30
Needs to Indicatio Indicatio	diagram showing origin of two energy states/or descr o mention applied magnetic field/electron transfer neg n that energy difference is in the radio frequency rang n that frequency of absorption <i>or</i> gap between the 2 e on the nature of nearby atoms <i>or</i> the chemical enviro	iption ates e energy states onment of the ¹ H	DaCambrid [1]
They are	not damage tissues/X-rays harmful/NMR of lower end not obscured by bones/skeleton be tuned to examine particular tissues/tumours/orga		[1] [1] [1] [max 2]
(c) (i) M∶∣	M+1 = 100/(1.1n)		
n=-	M+1 = 100/(1.1n) $\frac{0.66 \times 200}{14.5 \times 1.1} = \frac{66}{15.95} = 4.14 = 4$ carbon atoms ck for 1.1 in divisor, if missing, penalise		[1]
n = - Che (ii) Sing	$\frac{0.66 \times 200}{14.5 \times 1.1} = \frac{66}{15.95} = 4.14 = 4 \text{ carbon atoms}$ ck for 1.1 in divisor, if missing, penalise let at δ 2 suggests methyl adjacent to C=O		[1]
n = - Che (ii) Sing Qua	$\frac{0.66 \times 200}{14.5 \times 1.1} = \frac{66}{15.95} = 4.14 = 4$ carbon atoms ck for 1.1 in divisor, if missing, penalise let at δ 2 suggests methyl adjacent to C=O rtet at δ 4 suggests a –CH ₂ - group (adjacent to a –me	thyl group <i>)</i>	
n = - Che (ii) Sing Qua (allo Trip	$\frac{0.66 \times 200}{14.5 \times 1.1} = \frac{66}{15.95} = 4.14 = 4 \text{ carbon atoms}$ ck for 1.1 in divisor, if missing, penalise let at δ 2 suggests methyl adjacent to C=O	H ₂)	[1]

[Total: 10]

Paç	je 1	0	Mark Scheme	Syllabus of er	
			GCE A/AS LEVEL – October/November 2007	9701 230	
(a)	Iror	n is hi	igher in the reactivity series than copper (owtte)/allow us	e of E ^e	6.
	Cu ² If c	²⁺(aq) onver) + Fe(s) → Cu(s) + Fe ²⁺ (aq) rsion to Fe ³⁺ given, E _{cell} is –0.38	Syllabus 9701 He of E ^e	102
(b)	lt d	oes n	not require investment in machinery/labour		[1]
	lt re	equire	es little energy		[1]
			t produces little/no pollution/noise accept comparison with electrolytic method	[ma	[1] x 2]
(c)	The	e proc	cess takes a long time/requires smaller workforce		[1] [1]
(d)	(i)	0.75	5% is 7.5 kg in every tonne of ore		
		Hen	tonnes of ore yield $\frac{7.5 \times 150000}{1000}$ tonnes		
		or 1	,125 tonnes Cu		
		112	5 x 0.6 = 675 tonnes (accept 680)		[1]
	(ii)		x 0.17 = 76.5 tonnes (accept 77) 125 x 0.17 = 191.25 tonnes (accept 191) – this is an ecf	if 675 not in (i)	[1] [2]
(e)	e) Aluminium is too high in the reactivity series/very reactive/aluminium forms bonds with oxygen which are too strong/aluminium ore doesn't exist as sulphid /Fe unable to displace Al				
					[1] [1]
(f)	Control the pH (<i>greater</i> than pH 6.0)			[1]	
Bioreme Other re		reme	mediation/growth of special plants (to remove heavy metals) reasonable suggestions such as displacement by a more reactive metal/		[1]
			ation/ion exchange		[1] [2]
				[Tota	