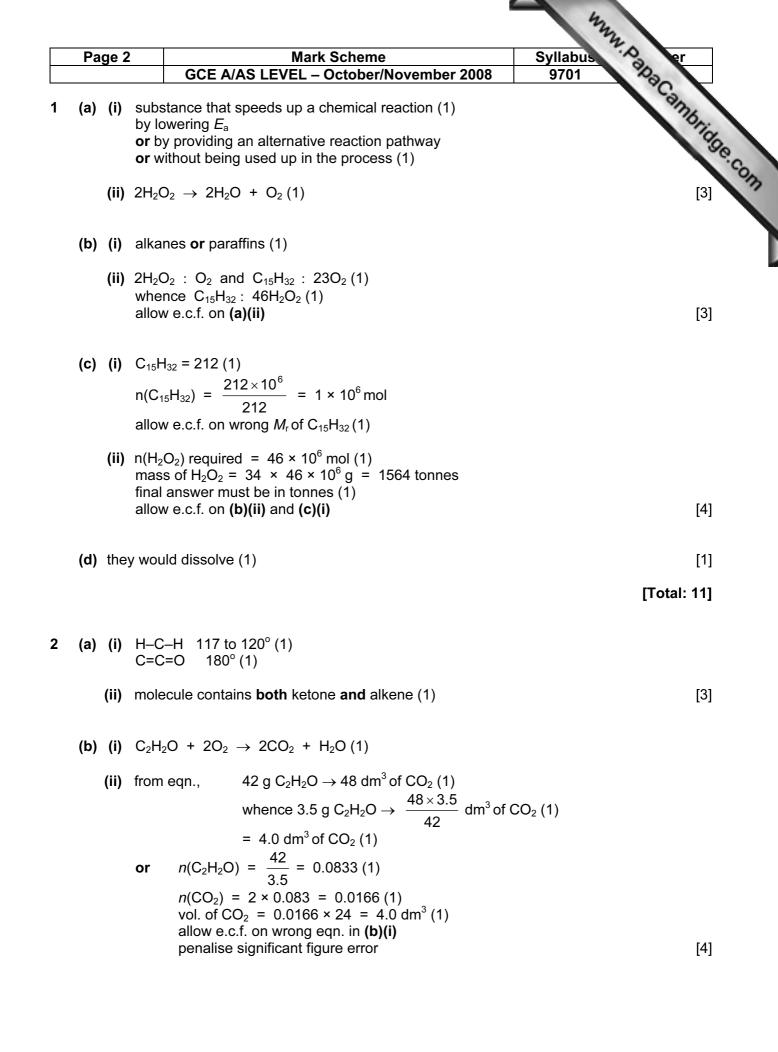
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level

www.papacambridge.com MARK SCHEME for the October/November 2008 question paper

9701 CHEMISTRY

9701/02

Paper 2 (Theory 1), maximum raw mark 60


This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2008 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 3	Mark Scheme	Syllabus er
	GCE A/AS LEVEL – October/November 2008	9701 20
1 mo from	alpy change when ol of a compound is formed (1) i its elements (1) eir standard states under standard conditions (1)	Syllabus 9701 Brocombride Syllabus 9701 Brocombride
$H_2 = C_2 H_2$ 2C	$\begin{array}{llllllllllllllllllllllllllllllllllll$	
(d) H ₂ O/wate	er/steam (1)	[1]
		[Total: 14]
cathode or	$\begin{array}{l} Cl^{-}(aq) \rightarrow \frac{1}{2} Cl_{2}(g) + e^{-} (1) \\ H^{+}(aq) + e^{-} \rightarrow \frac{1}{2} H_{2}(g) \\ 2H_{2}O(l) + 2e^{-} \rightarrow H_{2}(g) + 2OH^{-}(aq) (1) \end{array}$	
correct s	tate symbols (1)	[2]
(b) because	the iron in steel will react with chlorine (1)	[1]
2H ₂ 0	um hydroxide/NaOH (1) D + 2e ⁻ \rightarrow H ₂ + 2OH ⁻ 2H ⁺ + 2e ⁻ \rightarrow H ₂ (1)	
	ing OH^- in solution as NaOH (1)	[3]
(d) Na burr	s with a yellow flame/forms a white solid (1)	
2Na	+ $Cl_2 \rightarrow 2NaCl(1)$ is with a white flame/forms a colourless liquid (PCl ₃) o	r a white solid (PC <i>l</i> ₅) (1)
P +	$1\frac{1}{2}Cl_2 \rightarrow PCl_3$ or P_4 + $6Cl_2 \rightarrow 4PCl_3$	
or P	+ $2\frac{1}{2}Cl_2 \rightarrow PCl_5 \text{ or } P_4 + 10Cl_2 \rightarrow 4PCl_5(1)$	[4]
(e) MgCl ₂ 6	6 to 7 (1)	
SiC1 ₄ (. ,	
-	reacts with water/hydrolyses (1)	
	$PH_2O \rightarrow SiO_2 + 4HCl$ or $H_2O \rightarrow Si(OH)_4 + 4HCl$ or	
	$H_2O \rightarrow Si(OH)_4 + 4HCl \text{ or}$ $H_2O \rightarrow SiO_2.2H_2O + 4HCl(1)$	[5]
SiC <i>l</i> ₄ + 4	$120 \rightarrow 0.02.2120 + 4107(1)$	[0]

			424
	Page 4	Mark Scheme	Syllabus 7.0
GCE A/AS LEVEL – October/November 2008 9701		GCE A/AS LEVEL – October/November 2008	9701 23

4

organia reaction	turno ot	Franction	roogont	(a) Ofice
organic reaction CH ₃ CHO \rightarrow	nucleophilic	f reaction (1)	reagent HCN	(s) Intidue Con
CH₃CH(OH)CN	addition	(1)	or HCN and CN [−]	(1)
$CH_3CH_2CH_2CH_3 \rightarrow$	free radical	(1)	Br ₂	
CH ₃ CH ₂ CHBrCH ₃	substitution ((1)	or Br ₂ in an organic	c solvent
0130120101013		(')	not Br ₂ (aq)	(1)
$CH_3CH(OH)CH_3 \rightarrow$	elimination	(1)	conc. H ₂ SO ₄	(1)
CH ₃ CH=CH ₂				
$CH_3CH=CH_2 \rightarrow$	addition		KMnO₄/MnO₄ [−]	(1)
CH ₃ CH(OH)CH ₂ OH	or oxidation	(1)		

[10]

[Total: 10]

Page		Mark Schem		Syllabus	er
	GCE A	AS LEVEL – October	/November 2008	9701	Soc.
(a) (C ₄ H ₈ O ₂ (1)				mbri
(b)					.8
					as Cambrids
	HCO ₂ CH(CH ₃) ₂	HCO ₂ CH ₂ CH ₂ CH ₃	CH ₃ CO ₂ CH ₂ CH ₃ or	CH ₃ CH ₂ CO ₂ CH ₃ or	
			$CH_3CO_2C_2H_5$	$C_2H_5CO_2CH_3$	
	W	X	Y	Z	
e	each correct struct		Y	Z	[4]
	each correct struct	ure is worth (1)		Z	[4]
(c) (each correct struct			Z	[4]
(c) (each correct struct	ure is worth (1) C=O group/carbonyl g ldehyde group is abser	roup (1)	Z	[4]
(c) ((each correct struct i) presence of > ii) –CHO group/a or ketone is pr iii) alcohol C is (C 	ure is worth (1) C=O group/carbonyl g ldehyde group is abser esent (1)	roup (1)	Z	[4]
(c) (((i) presence of > ii) –CHO group/a or ketone is pr iii) alcohol C is (C allow e.c.f. on 	ure is worth (1) C=O group/carbonyl g Idehyde group is abser esent (1) H ₃₎₂ CHOH (c)(i) and (ii) (1) cation of candidate's es	roup (1) nt	Z	[4]

(d)	none	
	no chiral centres are present in any of the four esters allow e.c.f. on candidate's compounds in (a) (1)	[1]

[Total: 10]