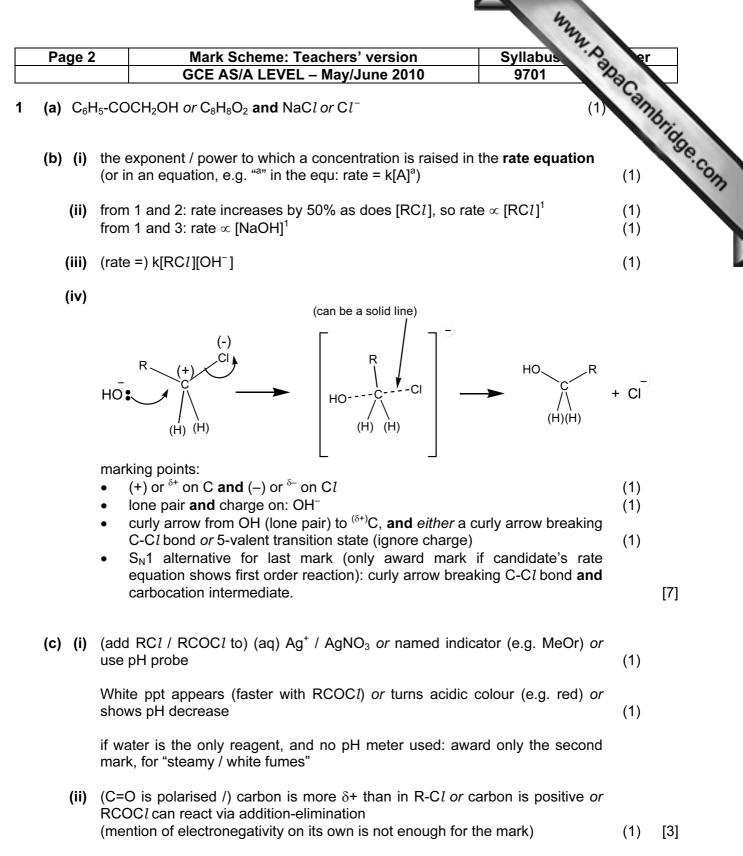
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level

www.papacambridge.com MARK SCHEME for the May/June 2010 guestion paper

for the guidance of teachers

9701 CHEMISTRY


9701/43 Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

[Total: 12]

				Syllabus 9701 less negative) L.E.		
	Page 3	3	Mark Scheme: Teachers' version GCE AS/A LEVEL – May/June 2010	Syllabus 9701	er	
				9701	°C.	
2	(a) less soluble down group				13	300
	lattice energy and hydration energies both decrease (i.e. become less negative)				(1)	19
	but H.E. decreases more (than L.E.) or change in H.E. outweighs L.E.				(1)	
	SO	ΔH_{sol} k	ecomes more endothermic / less exothermic		(1)	[4]
	(b) (i)	for M	lg:∆H = 2993 – 1890 – (2 × 550) = (+)3 (kJ mol ⁻¹)		(1)	
		for S	r: Δ H = 2467 – 1414 – (2 × 550) = −47 (kJ mol ⁻¹)		(1)	
	(ii)	•	H) ₂ should be more soluble in water, and Δ H is mor	re exothermic /		
		nega	tive		(1)	
		Assu	ming "other factors" (e.g. ΔS , <i>or</i> temperature etc.) are the	e same	(1)	
	(iii)		H) ₂ should be less soluble in hot water, because ΔH hermic	H is negative /	(1)	[5]
	(c) (i)	K _{sp} =	$[Ca^{2^+}][OH^-]^2$ (needs the charges) units: mol ³ dm ⁻⁹	(1) -	+ (1)	
) = n(OH ⁻) = 0.05 × 21/1000 = 1.05 × 10 ⁻³ mol in 25 cm ³			
		[OH⁻] = 1.05 × 1000/25 = 4.2 × 10⁻² (mol dm ⁻³)		(1)	
		[Ca²⁺] = 2.1 × 10⁻² (mol dm ⁻³)		(1)	
		K _{sp} =	2.1 × 10 ⁻² × (4.2 × 10 ⁻²) ² = 3.7 × 10⁻⁵		(1)	
	(iii)		soluble in NaOH due to the common ion effect <i>or</i> equili e l.h.s. by high [OH ⁻] (NOT just a mention of Le Chat ^r on i		(1)	[6]

[Total: 15]

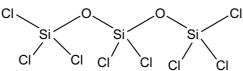
	Page 4	Ma	rk Scheme: Teachers' ve	rsion	Syllabus	er er
		GCE	AS/A LEVEL – May/June	e 2010	9701	12
3	(a) SiF₄	is symmetrical of	or tetrahedral <i>or</i> bonds are	e at 109° <i>or</i> has	no lone pa	ir or Annu
	4 ele		ed equally <i>or</i> all Si-F dipol			lone (1) Orige

compound	molecule has an overall dipole	molecule does not have an overall dipole
BC1 ₃		✓
PC1 ₃	\checkmark	
CCl_4		✓
SF ₆		\checkmark

mark row-by-row,

- (c) (i) Si and B have empty / available / low-lying orbitals or C does not have available orbitals (allow "B is electron deficient" but not mention or implication of d-orbital on B) (1)
 - (ii) $BCl_3 + 3H_2O \rightarrow H_3BO_3 + 3HCl \text{ or } 2BCl_3 + 3H_2O \rightarrow B_2O_3 + 6HCl$ (1)

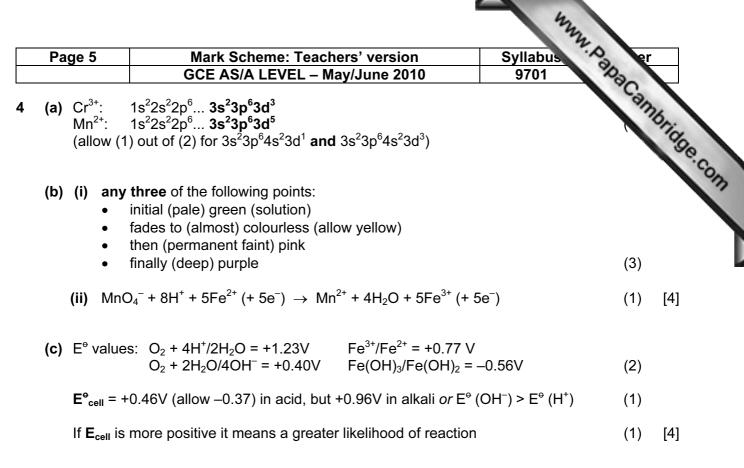
$$SiCl_4 + 2H_2O \rightarrow SiO_2 + 4HCl \text{ etc.}, e.g. \rightarrow Si(OH)_4, H_2SiO_3$$
(1) [3]

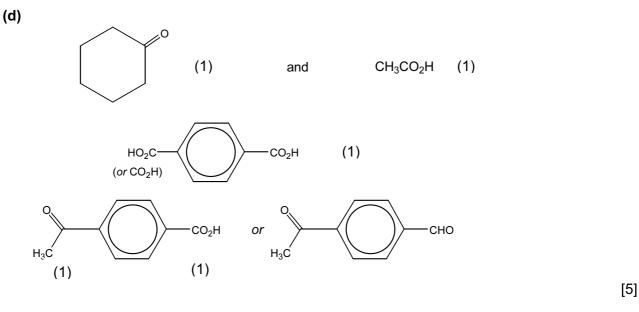

- (d) (i) $Si_3Cl_8O_2$ (this has $M_r = 84 + 280 + 32 = 396$) or $Si4Cl_4O_9$ or $Si_8Cl_4O_2$ (1)
 - (ii)

mass number	structure
133	Cl ₃ Si
247	Cl_3 Si-O-Si Cl_2
263	Cl ₃ Si-O-SiCl ₂ -O

(3)

(if correct structures are not given for last 2 rows, you can award (1) mark for two correct molecular formulae: either $Si_2Cl_5O + Si_2Cl_5O_2$ or $Si_3ClO_8 + Si_3ClO_9$ or $Si_7ClO + Si_7ClO_2$)

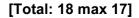

(iii)

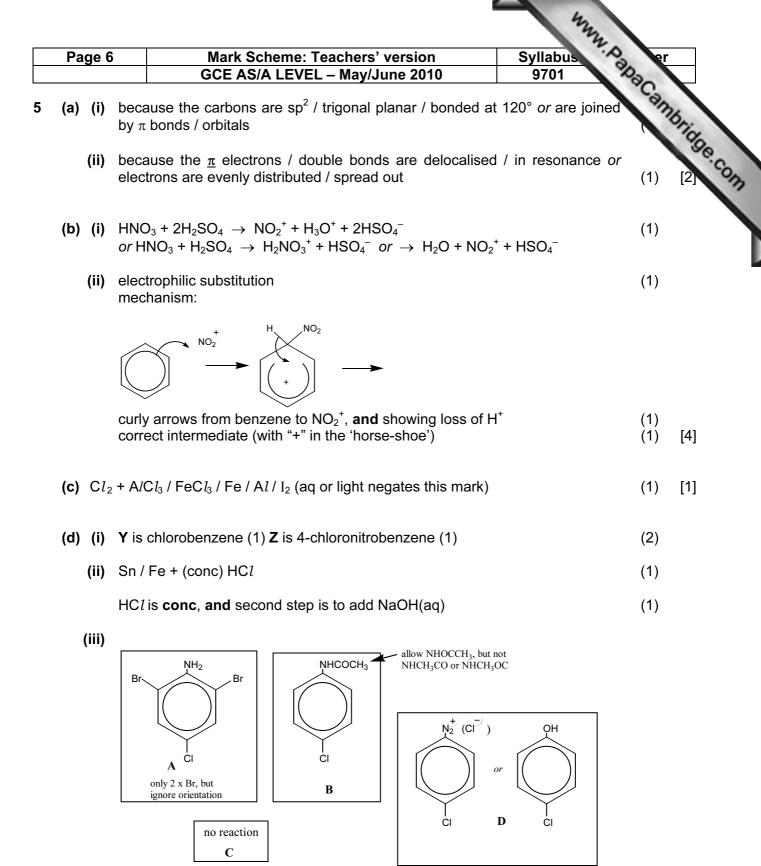


allow ecf on the structure drawn in the third row of the table in (ii) but any credited structure must show correct valencies for Si, Cl and O. (1) [5]

[Total: 11]

(2) [2]

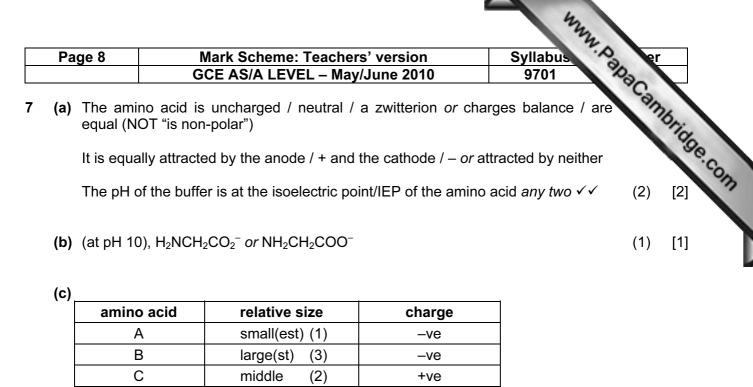




(e) (i)
$$(CH_3)_2C(OH)-CH_2OH$$

(1)

(ii) reaction I: (cold dilute) KMnO₄ ("cold" not needed, but "hot" or "warm" negates) (1) reaction II: $Cr_2O_7^{2-} + H^+ + distil$ (1) [3]



(4) [8]

(d) There are bonds *or* S-S bridges / linkages between the layers / sheets (in β-keratin) (but only van der Waals interactions between the layers in silk)
(1) [1]

[Total: 10]

(numbers are OK to show relative sizes)

Mark each row

(3) [3]

- (d) (i) lys val ser ala gly ala gly asp
 - (ii) gly ala gly (1)
 - (iii) aspartic acid (or lysine) (1) [4]

[Total: 10]

(2)

Page 9	Mark Scheme: Teachers' version Syllabus	er	•
	GCE AS/A LEVEL – May/June 2010 9701	Da	
(a) Reactior external	Mark Scheme: Teachers' versionSyllabusGCE AS/A LEVEL – May/June 20109701a II – since electrons are used up / required / gained / received (from circuit) $2e^- \rightarrow Pb$) $E^e = -0.13V$ $4H^+ + 2e^- \rightarrow Pb^{2+} + 2H_2O$) $E^e = +1.47V$ two correct F^e volume	Call	aprila-
(b) (Pb ²⁺ + 2 (PbO ₂ +	$\begin{array}{ll} e^{-} \rightarrow \mbox{Pb}) & E^{e} = -0.13 V \\ 4H^{+} + 2e^{-} \rightarrow \mbox{Pb}^{2+} + 2H_2 O) & E^{e} = +1.47 V \\ two \ correct \ E^{e} \ values \end{array}$	(1)	
Cell volta	age is 1.6(0) (V)	(1)	[2]
(c) (i) 3(+)		(1)	
	y are less heavy / poisonous / toxic / polluting \textit{or} are safer due to no c) H_2SO_4 within them) (1)	[2]
(d) (i) Plati	num or graphite / carbon	(1)	
hydr	y need large quantities of compressed gases which take up space <i>or</i> the ogen would need to be liquefied <i>or</i> the reactant is (highly) flammable / losive / combustible		[2]
(e) Glass:	saves energy – the raw materials are easily accessible / cheap <i>or</i> making glass is energy-intensive	(1)	
Steel:	saves energy – extracting iron from the ore <i>or</i> mining the ore is energy intensive <i>or</i> saves a resource – iron ore (NOT just "iron") is becoming scarce <i>either o</i>	one (1)	
Plastics:	saves a valuable / scarce resource: (crude) oil / petroleum	(1)	[3]
		[Total	• 101