WWW. Pals

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2010 question paper for the guidance of teachers

9701 CHEMISTRY

9701/21

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2		Mark Scheme: Teachers' version	Syllabus
	3	GCE A/AS LEVEL – October/November 2010	9701
1	(a) the actua	al number of atoms of each element present (1)	Camb
	in one m	olecule of a compound (1)	Tage
	(b) C _X H _Y +	$\left(x + \frac{y}{4}\right) O_2 \longrightarrow xCO_2 + \frac{y}{2} H_2O$	S.COM

(b)
$$C_X H_Y + \left(x + \frac{y}{4}\right) O_2 \longrightarrow xCO_2 + \frac{y}{2} H_2 O$$

 $xCO_2(1)$

$$\frac{y}{2} H_2 O(1)$$
 [2]

- (c) (i) oxygen/ $O_2(1)$
 - (ii) carbon dioxide/CO₂(1)
 - (iii) 10 cm³ (1)

(iv)
$$20 \text{ cm}^3(1)$$
 [4]

(d)
$$C_X H_Y + \left(x + \frac{y}{4}\right) O_2 \longrightarrow xCO_2 + \frac{y}{2} H_2 O$$

 10 cm^3 20 cm^3 10 cm^3

1 mol of C_xH_y gives 1 mol of CO₂

whence x = 1(1)

1 mol of C_xH_y reacts with 2 mol of O₂

whence
$$\left(x + \frac{y}{4}\right) = 2$$

y = 4(1)and

[Total: 11]

			2.0
	Page 3	Mark Scheme: Teachers' version	Syllabus
		GCE A/AS LEVEL – October/November 2010	9701
2	(a) N ₂ + 3H	$H_2 = 2NH_3(1)$	Cambridge
	(b) temperature between 300 and 550°C (1)		Se. Cor
		explanation of effect of temperature on programmers on programmers of NH ₃ or on position of equilibrium (1)	

- 2 (a) $N_2 + 3H_2 \Rightarrow 2NH_3(1)$
 - **(b)** temperature between 300 and 550°C (1)

catalyst of iron or iron oxide (1)

to speed up reaction or to reduce $E_a(1)$

[4]

- (c) manufacture of HNO₃ or explosives or nylon
 - or as a cleaning agent or as a refrigerant (1)

[1]

(d) fertiliser in rivers causes excessive growth of aquatic plants/algae (1)

when plants and algae die O₂ is used up/fish or aquatic life die (1)

[2]

- (e) (i) CO by incomplete combustion of the hydrocarbon fuel (1)
 - NO by reaction between N_2 and O_2 in the engine (1)
 - (ii) CO toxic/effect on haemoglobin (1)

NO toxic/formation of acid rain (1) [4]

(f) (i) platinum/Pt – allow palladium/Pd or rhodium/Rh (1)

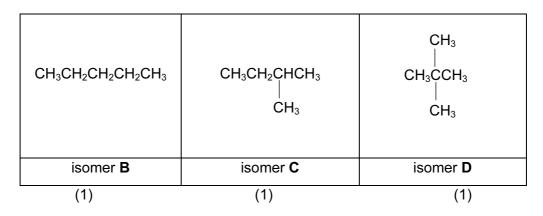
(ii)
$$2CO + 2NO \rightarrow 2CO_2 + N_2(1)$$

[2]

[Total: 14]

	Page 4		Mark Scheme: Teachers' version		er
			GCE A/AS LEVEL – October/November 2010	9701	123
3	(a) (i)	a co	mpound which contains only carbon and hydrogen (1)		Canb
	(ii)	sepa	aration of compounds by their boiling points (1)		Tage
	(b) (i)	high	temperature and high pressure (1)		COM .

- 3 (a) (i) a compound which contains only carbon and hydrogen (1)
 - (ii) separation of compounds by their boiling points (1)
 - **(b) (i)** high temperature **and** high pressure (1)


high temperature and catalyst (1)

(ii)
$$C_{11}H_{24} \rightarrow C_5H_{12} + C_6H_{12}$$
 or

$$C_{11}H_{24} \rightarrow C_5H_{12} + 2C_3H_6$$
 or

$$C_{11}H_{24} \rightarrow C_5H_{12} + 3C_2H_4 (1)$$

(c) (i)

(ii) the straight chain isomer (isomer **B** above) (1)

it has the greatest van der Waals' forces (1)

because unbranched molecules have greater area of contact/ can pack more closely together (1)

(d) enthalpy change when 1 mol of a substance (1)

is burnt in an excess of oxygen/air under standard conditions or is completely combusted under standard conditions (1)

[2]

[6]

[3]

_						20	
	Page 5		•		eme: Teachers' version	Syllabus	Tax Per
				GCE A/AS LEVE	EL – October/November 2010	9701	100
	(e)	(i)	heat	released = m c δ T =	= 200 x 4.18 x 27.5 (1)		A. Papa Cambridge
			= 22	2990 J = 23.0 kJ (1)		13
		(ii)	23.0	kJ produced from 0.	.47 g of E		
			2059	3 kJ produced from -	$\frac{0.47 \times 2059}{23.0}$ g of E (1)		
			= 42	2.08 g of E (1)			
			allov	v ecf in (i) or (ii) on c	andidate's expressions		[4]
	(f)	C ₃ F	H ₆ = 4	1 2			
	()		° s C₃H₀				
		for	ocf F	must ha unsaturata	d and be no larger than $C_5(1)$		[1]
		101	OOI, L	. mast be anoatarate			
							[Total: 18]
4	(a)	rea	ction	1 reagent	NaOH/KOH (1)		
				solvent	H₂O/water/aqueous (1)		
		rea	ction	2 reagent	NH₃/ammonia (1)		
				solvent	ethanol/C ₂ H ₅ OH/alcohol (1)		
		rea	ction	3 reagent	NaOH/KOH (1)		
				solvent	ethanol/C ₂ H ₅ OH/alcohol (1)		[6]
	(b)	with CH ₃ CH ₂ CH ₂ I rate would be faster (1)					
		C-I bond is weaker than C-Br bond (1)					
	C-I bond energy is 240 kJ mol ⁻¹ , C-Br bond energy is 280 kJ r data must be quoted for this mark (1)			ol ⁻¹	[3]		

non-flammable

unreactive (any 2)

[2]

(c) non-toxic

volatile/low bp

			V .
Page 6	Mark Scheme: Teachers' version	Syllabus	er
	GCE A/AS LEVEL – October/November 2010	9701	120

- (d) (i) when a covalent bond breaks the two electrons in the bond are shared between the two atoms (1)
 - (ii) $CCl_2F_2 \rightarrow CClF_2 + Cl$ (as minimum) allow $CCl_2F + F(1)$

[2]

(e) they are flammable (1)

[1]

[Total: 14]

5 (a) NaBr/sodium bromide

[1]

(b) Br₂/bromine or SO₂/sulfur dioxide

[1]

(c) concentrated sulfuric acid is an oxidising agentorphosphoric(V) acid is not an oxidising agent

[1]

[Total: 3]