WWW. Pala

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2011 question paper for the guidance of teachers

9701 CHEMISTRY

9701/22

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	er
	GCE AS/A LEVEL – May/June 2011	9701	100

1 (a)
$$K_c = \frac{[CH_3CH_2R][H_20]}{[CH_3CH_2H][ROH]}$$

no units

(1)

(b) (i)
$$n(\text{NaOH}) = \frac{22.5 \times 2.00}{1000} = 0.045$$

(1)

(1)

(ii)
$$n(NaOH) = n(HCl) = 0.005$$

(1)

(1)

(iv)
$$n(NaOH) = 0.045 - 0.005 = 0.04$$

allow ecf on (i) and/or (ii)

(1) [4]

(c) (i)
$$n(NaOH)$$
 and $n(CH_3CO_2H) = 0.04$
 $n(CH_3CO_2R)$ and $n(H_2O) = 0.06$

(1) (1)

(ii)
$$K_c = \frac{0.06 \times 0.06}{0.04 \times 0.04} = 2.25$$

allow ecf on wrong values in (b)(i) allow ecf on wrong expression in (a)

(1) [3]

(d) E_a for reaction with ester is high or E_a for reaction with acid is low or
 reaction with ester is slow or

reaction with acid is fast

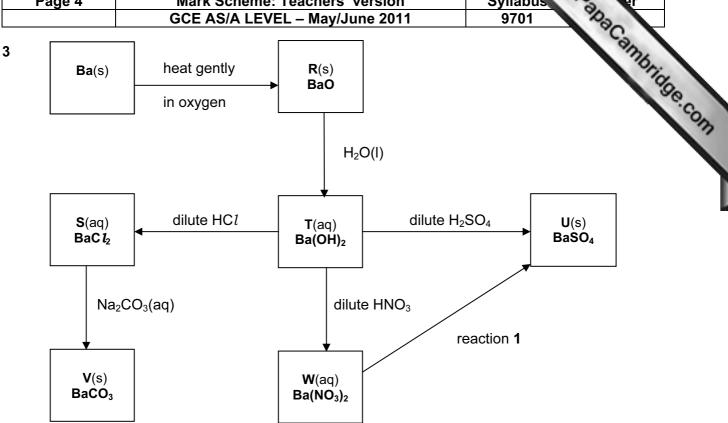
(1) [1]

(e) equilibrium moves to RHS/more ester would be formed to maintain value of K_c or to restore system to equilibrium

(1) [2]

(1)

[Total: 12]


	Page	3	Mark Scheme: Teachers' version	Syllabus	r
		GCE AS/A LEVEL – May/June 2011 9701		9701	
2	(a)		$CH_2=CH_2 + HF \rightarrow CH_3CH_2F$	Cal	76.
			ds 4 C-H 1640 bonds 5 C-H 2050 ken 1 C=C 610 made 1 C-C 350 mol ⁻¹ 1 H-F <u>562</u> /kJ mol ⁻¹ 1 C-F <u>E</u> 2812 (2400 + <i>E</i>)	Syllabus A. Paragonal Property of the Syllabus A. Paragonal Property o	TOS
			g reactant bonds requires + 610 + 562 = 2812 kJ mol ⁻¹	(1)	
	m	naking	product bonds gives		
	5	x 410	+ 350 + $E = (2400 + E) \text{ kJ mol}^{-1}$	(1)	
	Δ	H ^e reaction	$_{\rm n}$ = - (2400 + E) + 2812 = -73 kJ mol ⁻¹	(1)	
	(2	2400 +	E) = 2812 + 73 = 2885 kJ mol ⁻¹		
	Ε	= 288	85 - 2400 = 485 kJ mol ⁻¹	(1)	
	al	llow ec	f on wrong bond energy values and/or incorrect arithn	netic	[4]
	no ui vo no	ny two on-toxio nreactivolatile on-flam asily liq	c ve nmable	(1 + 1)	[2]
	C	-C <i>l</i> bor	nd energy is 340 kJ mol ⁻ 1 and is weaker than C-F or C nd is broken by uvl or radicals are formed	C-H bonds (1)	[2]
	(d) (i	•	trapping of reflected heat from the Earth in the lower a ducing global warming	atmosphere	
	(ii	i) CO ₂	c/carbon dioxide	(1)	[3]

(e) octahedral

[Total: 12]

(1) [1]

Page 4	Mark Scheme: Teachers' version	Syllabus
	GCE AS/A LEVEL – May/June 2011	9701

(b) (i) T to W

$$Ba(OH)_2 + 2HNO_3 \rightarrow Ba(NO_3)_2 + 2H_2O$$
 (1)

heat on
$$\mathbf{V}$$

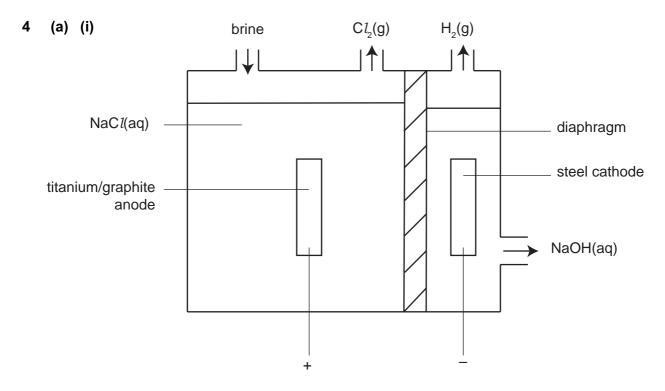
BaCO₃ \rightarrow BaO + CO₂ (1)

(ii) T to V
$$CO_2$$
 (1) $Ba(OH)_2 + CO_2 \rightarrow BaCO_3 + H_2O$ (1) [4]

(c)
$$Na_2SO_4(aq)/K_2SO_4(aq)$$
 or any soluble sulfate (1) [1]

Page 5	Mark Scheme: Teachers' version	Syllabus
	GCE AS/A LEVEL – May/June 2011	9701

(d) (i) Ba:O =
$$\frac{81.1}{137}$$
 : $\frac{18.9}{16}$
= 0.59 : 1.18
= 1 : 2
gives BaO₂


or

(1)

(iii)
$$BaO_2 + H_2SO_4 \rightarrow BaSO_4 + H_2O_2$$

(1) [4]

(ii) anode
$$2Cl(aq) \rightarrow Cl_2(g) + 2e^-$$
 (1) cathode $2H^+(aq) + 2e^- \rightarrow H_2(g)$

 $2H_2O(I) + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$

[Total: 7]

[2]

(1)

Page 6	Mark Scheme: Teachers' version	Syllabus	2 er
	GCE AS/A LEVEL – May/June 2011	9701	100-

5	(a)	CH ₂ OCO(CH ₂) ₁₆ CH ₃
		CHOCO(CH ₂) ₁₆ CH ₃
		CH ₂ OCO(CH ₂) ₁₆ CH ₃

all three alcohol groups must be esterified

(b) dilute HC*l* or dilute H₂SO₄ or dilute mineral acid or NaOH(aq) followed by dilute acid

(c)
$$CH_3(CH_2)_7 \qquad H$$

$$C \longrightarrow C$$

$$(CH_2)_7CO_2H$$

(1) [1]

(d) (i) fatty acid that contains more than one C=C bond

(1)

(ii) hydrogen nickel/Raney nickel/platinum/palladium

(1) (1) [3]

(e) (i) $CH_3(CH_2)_7CHO$ $OHC(CH_2)_7CX$ (1) (1)

(ii) 2,4-dinitrophenylhydrazine yellow/orange/red precipitate

(1) (1)

yellow/orange/red pred

or Fehling's/Benedict's solution

. .

(iii) Tollens' reagent silver mirror/ grey precipitate

or brick red ppt.

(1)

(f) (i) two

(1)

(1)

[6]

(ii) ester

(1) [2]

[Total: 14]