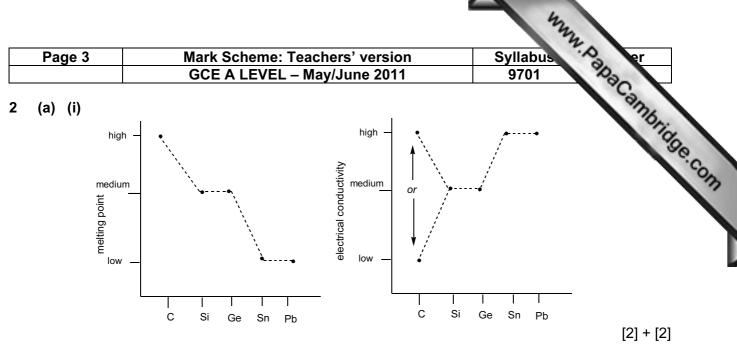
www.papacambridge.com MARK SCHEME for the May/June 2011 question paper

for the guidance of teachers

9701 CHEMISTRY

9701/42

Paper 4 (A2 Structured Questions), maximum raw mark 100


This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

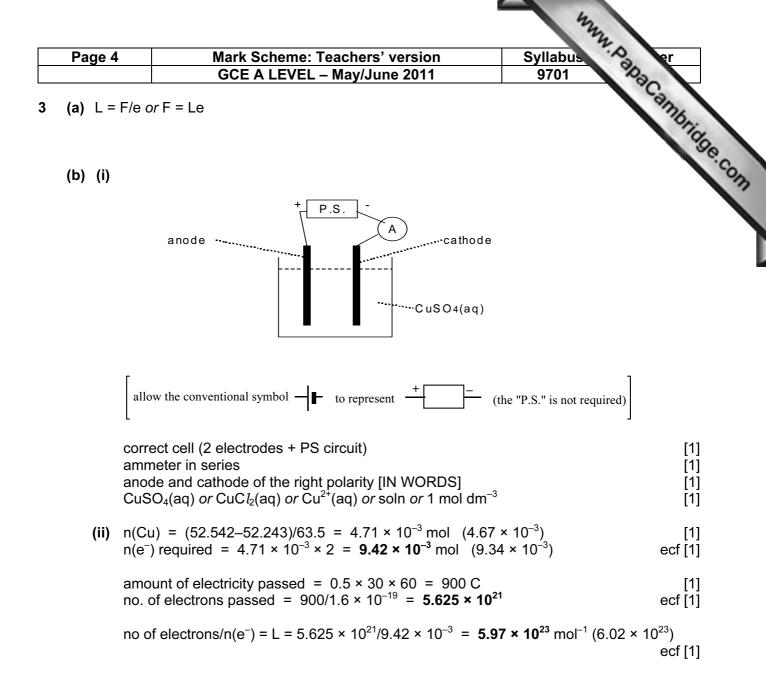
Page 2	<u>!</u>					Teache – May/、				\pm	Syllabus 9701	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	apa er	
(a) [H ⁺ pH] = √(0 = –loç).05 × g₁₀(5.2	[:] 5.6 × 29 × 1	10 ⁻⁴) = 0 ⁻³) =	= 5.29 2.3	9 × 10 ⁻³	' mol dn	n ⁻³					ersible/	bidge
(b) (i)	(Brøn: equilit			acio	j-bas€	e/proton	ı transfe	ər/neı	utralisa	ition/	exotherm/	iic/reve	rsible/	[1]
(ii)							-			_(Ð			
	нŧ	•• N + •+ H	Н		H •	•• F :		Н ₽	H •• N • •+ H	н	• • • •	Θ		
		[1]			I	[1]	L			」 [1]			3	x [1]
(iii)	dative ionic:	ent: be betwe betwe	ween N een Nł		[−] or N⁺		or ammo	onium	i and fl	uor <u>ic</u>	<u>de</u> (i.e. in	words)	I	[1] [1] [1]
(iv)	(reve i high te low pr	rse re empei ressur	eaction erature re, bec	n, remen , becau cause re	mber) Ise rev everse	verse re	on caus				in no. of <u>c</u>	<u>Jaseou:</u>	<u>s</u> molec	[1]
(c) (i)	4NH ₃	+ Cu	S + 20	$D_2 \rightarrow [0]$	Cu(N⊦	H₃)₄]SO₄	4							[1]
(ii)	deep/	dark/r	royal b	lue <i>or</i> p	ourple	INOT v	/iolet]							[1]
(iii)					•	•	-				f colour de _{-n}] ²⁺ , wher		-	[1]
				ge (of N			6] Ur [υ(n	<u>י</u> ע) _n (יען	⊓3 <i>J</i> a–ı	_ח], אווכי	еа-4	UU	[1] [4]
						acement ead of 'I					DS] splaced b	y chlori	ide")	[1]
						ssibilitie ²⁺ + nC <i>l</i>		Cu(H₂′	O) _{6-n} C	l _n] ^{2–n}	+ nH₂O			[1] [1]
[Cu [Cu equ	$u(H_2O)_6$ $u(H_2O)_6$ uation c] ²⁺ + 2] ²⁺ + 4 could i	2C <i>T</i> – 4C <i>T</i> – include	→ [Cu(H → [CuC e HC <i>l</i> o	H₂O)₄C ;¼] ^{2−} + on the ∣	C <i>l</i> ₂] + 2H - 6H ₂ O LHS, fo	H ₂ O or exam	ple:		-	from mar 4H ⁺ + 6H		ible are:	: [3]
L	(• 2 - 70.	1		, <u>.</u> -	u e		0.122		•••	+		2-		r., 1

 (ii) m. pt. trend: (from) giant/macro molecular/covalent to metallic bonding (or implied from at least two specific examples, e.g. diamond and tin) (mention of *simple* covalent anywhere negates this mark)

conductivity trend: increasing delocalisation of electrons (down the group) [1] or e⁻ are more free-moving (or implied from at least two examples, e.g. Si is semiconductor, lead has delocalised e⁻)

[6]

[1]


(b) (i)	heat PbO ₂ , or T	> 200°C or ∆ on arrow: PbO ₂	$_2 \rightarrow \text{PbO} + \frac{1}{2}\text{O}_2 \text{ (N.B)}$. ½O ₂ NOT [O])	[1]
---------	------------------------------	---	---	----------------------------	-----

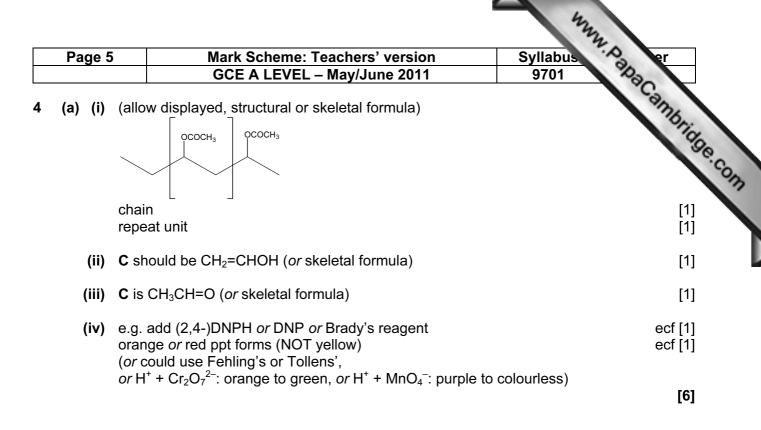
(ii)	(burning CO in air produces CO_2):CO + $\frac{1}{2}O_2 \rightarrow CO_2$ blue flame (ignore ref to limewater test)	[1] [1]
(iii)	e.g. SnC $l_2(aq)$ will turn KMnO ₄ from purple to colourless 5Sn ²⁺ + 2MnO ₄ ⁻ + 16H ⁺ \rightarrow 5Sn ⁴⁺ + 2Mn ²⁺ + 8H ₂ O	[1] [1]
	or SnC $l_2(aq)$ will turn K ₂ Cr ₂ O ₇ from orange to green 3Sn ²⁺ + Cr ₂ O ₇ ²⁻ + 14H ⁺ \rightarrow 3Sn ⁴⁺ + 2Cr ³⁺ + 7H ₂ O	[1] [1]
	or SnCl ₂ (aq) will turn Fe ³⁺ from orange/brown/yellow to green/colourless Sn ²⁺ + 2Fe ³⁺ \rightarrow Sn ⁴⁺ + 2Fe ²⁺	[1] [1]
	or SnCl ₂ (aq) will turn Cu ²⁺ (aq) from blue to colourless or give a pink/brown/co coloured ppt. Sn ²⁺ + Cu ²⁺ \rightarrow Sn ⁴⁺ + Cu	pper- [1] [1]

Other possible oxidants (E^{e} must be > +0.2V) include: $S_2O_3^{2-}$, H_2O_2 , Cl_2 , Br_2 , I_2 and Ag^+ . No observations with the first three of these, but this should be stated explicitly, e.g. "no colour change".

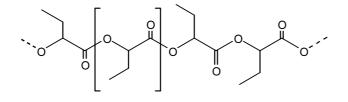
[5]

[Total: 11 max 10]

(values in italics are if candidate has used $A_r = 64$, not 63.5. No last mark if not 3 s.f.: correct ans = [5]) [9]


(c)

compound	product at anode	product at cathode
AgF	O ₂	Ag
FeSO ₄	O ₂	H ₂
MgBr ₂	Br ₂	H ₂


 $\begin{array}{l} \text{6 correct} \Rightarrow [5] \\ \text{5 correct} \Rightarrow [4] \text{ etc.} \end{array}$

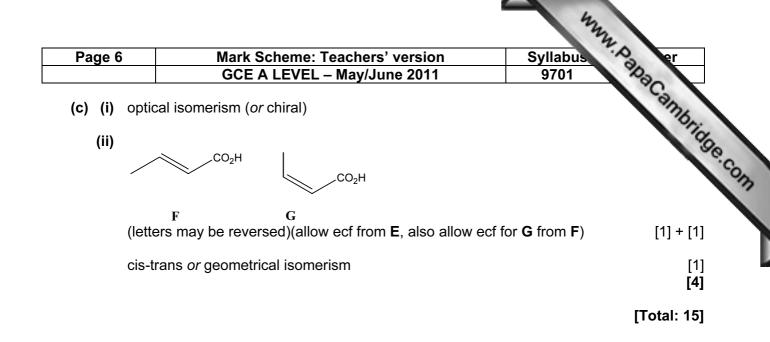
Names can be used instead of symbols. If the atomic symbol (e.g. Br or H or O) is used instead of the molecular formula (e.g. Br_2 etc.) then deduct [1] mark only for the whole table.

[5]

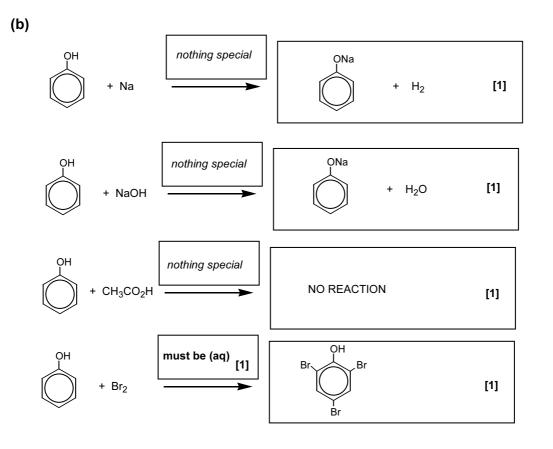
(b) (i) (allow displayed, structural or skeletal formula)

D correct repeat unit bracketed (any 3 atoms in chain)

(ii) ester

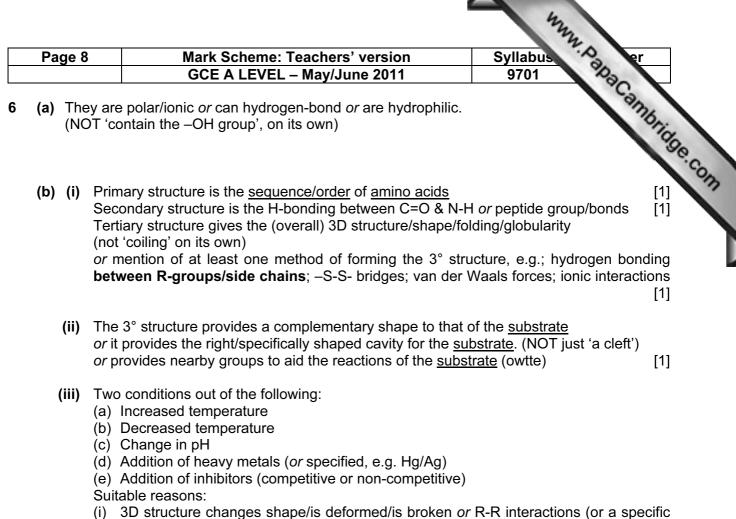

[1]

[1]

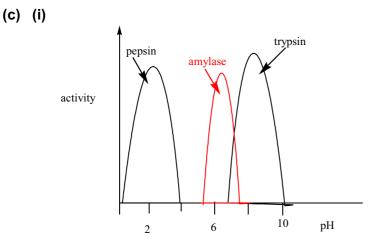

- (iii) **E** is CH₃CH₂CH(OH)CO₂H (*or* skeletal structure etc.)(2-hydroxybutanoic acid) [1] allow ecf here from the formula of the repeat unit shown in (**b**)(**i**)
- (iv) <u>condensation</u> (polymerisation)
- (v) they have the same "molecular" formula or C₄H₆O₂ (do NOT allow empirical formula) or same no. and type of atoms or same functional group or both are esters or they are isomers

[5]

[1]


Page 7	Mark Scheme: Teachers' version	Syllabus
	GCE A LEVEL – May/June 2011	9701 20
due to +ve	inductive effect of C_2H_5 group or C_2H_5 gives e^- to	o oxygen <i>or</i> intensifies e

[5]


(c) H is OH	
NO ₂	[1]
reagents & conditions: step 1 dilute HNO ₃ (dilute, not just 'aq'. H ₂ SO ₄ negates)	[1]
step 2 Sn/SnC l_2 /Fe + HC l or H ₂ + Ni/Pd (NOT H ₂ + Pt. NOT LiA l_4 or NaBH ₄)	[1]
step 3 CH ₃ COC <i>l or</i> (CH ₃ CO) ₂ O ('aq.' negates)	[1] [4]

[Total: 13]

- example, e.g. H-bonding) are broken
- (ii) inhibitor occupies active site.
- (iii) either fewer substrate molecules with $E > E_a$ or fewer successful collisions

[2] **[6]**

left hand peak labelled as pepsin right hand peak labelled as trypsin (Correct enzymes, but wrong way round, scores [1] only)

(ii) Peak between pH 6 and pH 8, and correct name (amylase)

[1] [3]

[1]

[1]

		2.
Page 9	Mark Scheme: Teachers' version	Syllabus
	GCE A LEVEL – May/June 2011	9701

7 (a)

aç	je 9	Mark Scheme: Teachers' version GCE A LEVEL – May/June 2011	n Syllabus 77 9701	Car
	Numbe	er Process	Correct sequence (numbers)	Cambridge.com
	Α	Place samples on agarose gel	4	COM
	В	Use polymerase chain reaction	3	
	С	Label with radioactive isotope	6	
	D	Extract DNA	1	
	E	Use restriction enzyme	2	
	F	Carry out electrophoresis	5	

- (b) (i) P or phosphorus (NOT phosphate)
 - (ii) Phosphate groups are present in DNA or it makes the DNA fragments/bands etc. visible or locates their position or identifies them on a photographic plate etc. [1] (NOT because it's radioactive or makes the bands coloured) [2]
- (c) (i) Yes, all 4 children share one/some band (or match/gene/fragment/part/DNA/ amino acid) with the mother's (DNA) (NOT the general statement "matches the mother's DNA") [1]
 - (ii) Child 2, since he/she shares none of the bands of father's DNA/fingerprint or their fingerprint/DNA does not match the father's DNA (the general "match" is OK here) [1] [2]
- (d) (i) Compare DNA fingerprint for each fragment (can be read into use of the word 'same' below) [1] Match the DNA patterns to determine which came from which skin [1]
 - (ii) A named example of biological origin (N.B. a material, not a whole organism) [1] e.g. leather (= bull skin), pollen, fish scales, leaves, seeds, feathers, hair, blood, textiles (or a named one like wool or silk or cotton or linen/flax), wood.

(N.B. NOT human or goat skin, also not metal, pottery or stone. If more than one material is given, mark the first one)

[3]

[1]

[Total: 10]

Page 1	10 Mark Scheme: Teachers' version Syllabus	er_
	GCE A LEVEL – May/June 2011 9701	Nac -
(a) Ra to	ange should be from 10^{-6} – 10^{-7} (the left hand arrow) 10^{-8} – 10^{-9} (the right hand arrow)	estion) [1]
wit allo	orms of the same element (<i>or</i> of carbon , since carbon is the context of the que th different structures/arrangements of atoms ow 'different molecular structure', but not structural formula. Any mention of gates the mark.	L · J
or	anoparticles are smaller than (animal) cells <i>or</i> they can pass through the cell m pass into/between cells rugs can be bound to/enclosed by the nanoparticle	embrane [1] [1] [2]
		[-]
(d) (i)	Reduction/redox	[1]
(ii)	<i>M</i> _r of chalcopyrite is 63.5 + 56 + 64 = 183.5 Mass of copper present is 63.5	
	Hence percentage of copper present = $\frac{63.5 \times 100}{183.5}$ = 34.6%	[1]
	(if A _r (Cu) = 64 is used, ans = 34.8 %. allow 34–35 %)	
(iii)	If the ore contains 2% of chalcopyrite by mass, calculate how much copper from each tonne of ore.	^r is produced
	1 tonne = 1000 kg 1 tonne of chalcopyrite would produce 346 kg of copper 1 tonne of 2 % ore would produce 346 × 0.02 or 6.9 kg of copper ecf from (a (accept 7.0 or 7 kg)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

- answer may be given as 7000 g or 7 × 10^{-3} tonnes. If no units are given, assume they are tonnes, and mark accordingly)
- (iv) By displacement with a metal (the following specified metals higher than Cu in the ECS may be used: Fe, Zn, Sn, Pb, A*l*, Mg. (NOT Ca, Li, Na. K etc.) *or* with a suitable non-metallic reducing agent, e.g. SO₂ or Sn²⁺, but not something that wouldn't react, like H₂ *or* By electrolysis (with carefully controlled voltage)

[4]

[Total: 10]