UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level

www.papaCambridge.com MARK SCHEME for the October/November 2011 question paper

for the guidance of teachers

9701 CHEMISTRY

9701/21

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

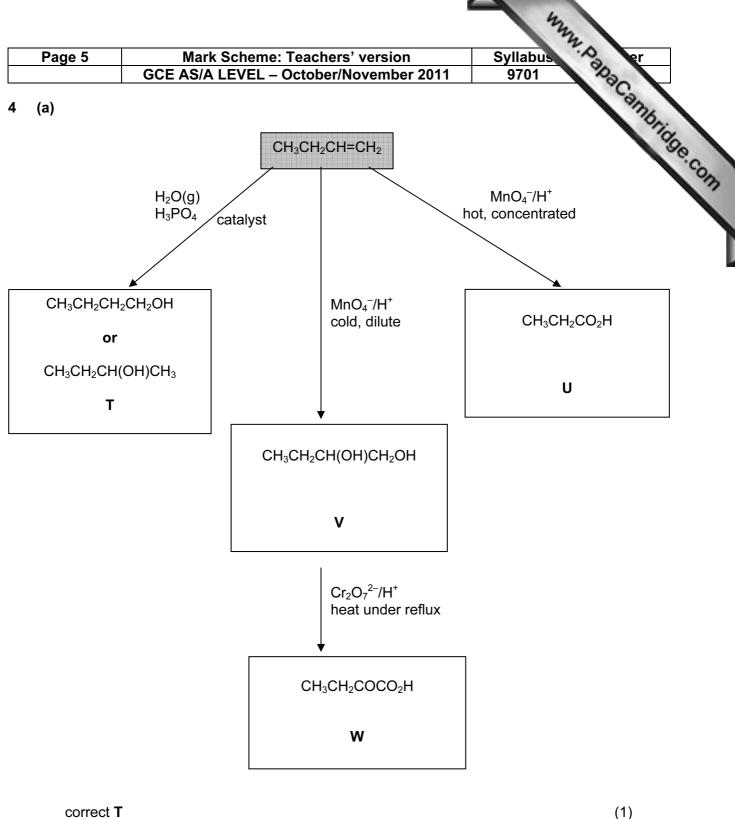
		4	m
	Page 2	Mark Scheme: Teachers' version Syllabus	P er
		GCE AS/A LEVEL – October/November 2011 9701	No.
1	(a) (i) mas	ss of C = $\frac{12 \times 0.352}{44}$ = 0.096g	(1)
	n(C	$() = \frac{0.096}{12} = 0.008$	(1) ³ Ge.com
	(ii) mas	ss of H = $\frac{2 \times 0.144}{18}$ = 0.016g	(1)
	n(H	$) = \frac{0.016}{1} = 0.016$	(1)
	(iii) mas	ss of oxygen = 0.240 – (0.096 + 0.016) = 0.128g	(1)
	n(O	$0) = \frac{0.128}{16} = 0.008$	(1)
	allo	w ecf at any stage	[6]
	(b) C:H:C	D = 0.008: 0.016 : 0.008 = 1:2:1	
	allow C	: H : O = $\frac{0.096}{12}$: $\frac{0.016}{1}$: $\frac{0.128}{16}$ = 1:2:1	
	gives C	H ₂ O	(1) [1]
	(c) (i) <i>M</i> _r	$= mRT = \frac{0.148 \times 8.31 \times 333}{1.01 \times 10^5 \times 67.7 \times 10^{-6}}$	(1)
		= 59.89	
	allo	w 59.9 or 60	(1)
	(ii) C₂⊦	1 ₄ O ₂	(1) [3]
	(d) CH ₃ CO ₂	2H	(1)
	HCO ₂ CI	H ₃	(1) [2]
	(e) the only	products of the reaction are the two oxides H_2O and CO_2 and copp	er (1) [1]
			[Total: 13]

Pa	ge 3	Mark Scheme: Teachers' version	Syllabus	er er	,
		GCE AS/A LEVEL – October/November 2011	9701	Da	
(-)	0($(-1)^{+}(-1)^{+}(-1)^{-}(-1)$		Ca,	
(a)		$) \rightarrow S^{+}(g) + e^{-}$			36
		ect equation ect state symbols		(1)	10
	0011			(1)	0
			Syllabus 9701		
(b)		n Na to Ar,			
		ctrons are added to the same shell/have same shielding		(1)	
		ctrons are subject to increasing nuclear charge/proton numbe ctrons are closer to the nucleus or atom gets smaller	er.	(1) (1)	[3]
	CICC			(')	[0]
(c)	(i)	Mg and A <i>l</i>			
(-)	(-)	in Mg outermost electron is in 3s and			
		in A_{l}^{T} outermost electron is in 3p		(1)	
		2n electron is at higher onergy or			
		3p electron is at higher energy or is further away from the nucleus or			
		is more shielded from the nucleus		(1)	
				(.)	
	(ii)	S and P			
		for S one 3p orbital has paired electrons and			
		for P 3p sub-shell is singly filled		(1)	
		paired electrons repel		(1)	[4]
				(.)	

(d) (i) and (ii)

element	Na	Mg	Al	Si	Р	S	
conductivity	high	high	—	moderate	te low lo		
melting point	low	high	_	high	low	low	
(1) (1) (1) (1) (1)							
one mark for each correct column							

(e) germanium/Ge


(1) [1]

[5]

[Total: 15]

Page 4	Mark Scheme: Teachers' version	Syllabus Syllabus	•
	GCE AS/A LEVEL – October/November 2011	9701 20	
(a) the o	verall enthalpy change/energy change/ ΔH for a reaction	Syllabus 9701 (1)	26.
	lependent of the route taken or		20
	lependent of the number of steps involved		- 6
provi	ded the initial and final conditions are the same	(1)	[2]
(b) (i) h	$K_2CO_3 + 2HCl \rightarrow 2KCl + H_2O + CO_2$	(1)	
(ii) h	neat produced= m × c × δ T = 30.0 × 4.18 × 5.2		
	= 652.08 J per 0.0200 mol of K ₂ CO ₃	(1)	
(iii) (0.020 mol $K_2CO_3 = 652.08 J$		
1	1 mol $K_2CO_3 \equiv \frac{652.08 \times 1}{0.0200}$ = 32604 J		
e	enthalpy change = -32.60 kJmol ⁻¹	(1)	
(iv) t	o prevent the formation of KHCO ₃ or		
t	o ensure complete neutralisation	(1)	[4]
(c) (i) ł	$KHCO_3 + HCl \to KCl + H_2O + CO_2$	(1)	
(ii) h	neat absorbed= m × c × δ T = 30.0 × 4.18 × 3.7		
	= 463.98 J per 0.0200 mol of KHCO ₃	(1)	
(iii) (0.020 mol KHCO ₃ ≡ 463.98 J		
1	1 mol KHCO ₃ ≡ <u>463.98 × 1</u> = 23199 J 0.0200		
e	enthalpy change = +23.20 kJmol ⁻¹	(1)	[3]
(d) ∆ <i>H</i> =	2 × (+23.20) – (-32.60) = +79.00 kJ mol ⁻¹	(2)	[2]
()		()	

[Total: 11]

	(')	
correct U	(1)	
correct V	(1)	
correct >CO group in W	(1)	
correct –CO ₂ H group in W	(1)	[5]

				Mary No.	
Page 6		Mark Scheme: Teachers		Syllabus A er]
(b) T+U		AS/A LEVEL – October/N	9701 Darcanno		
H H-C· H	H 0 -Ċ-Ć′ H 0-	Н Н Н Н -С-С-С-С-Н Н Н Н Н	Syllabus 9701 Bracenner	Age com	
or		Ч Н Н С-С-С ^{/Н} `Н Н		l	
	structures ly displayed	d ester group		(1) (1) [2 [Total: 7	2] 7]
5 (a) (i) 1		ot hydroxyl		(1) (1)	
2	aldehyde	not carbonyl		(1)	
(ii)	test 1	, ,			7
	reagent	Na	PCl ₃ /PCl ₅ /PBr ₃	RCO₂H/H ⁺	_
	bservation	gas/H ₂ /effervescence/ fizzing	HC1/HBr steamy fumes	fruity smell	
	test 2			1	
	reagent	Tollens' reagent	Fehling's reagent	t 2,4-dinitro- phenylhydrazine	
ol	bservation	Ag mirror/silver/ black ppt	brick-red ppt red ppt	orange/red/yellow ppt/solid	

only award the observation mark if reagent is correct

(4) [7]

		Mar March
Page 7	Mark Scheme: Teachers' version	Syllabus er
	GCE AS/A LEVEL – October/November 2011	9701
(b) (i) HC	ООН	Syllabus 9701 (1) (1) (2000 (2000 (2000) (1)
(ii) HC	ОН	Com
	0	(1) [2]

5 (c)

route	starting compound	first reagent	intermediate X	second reagent	intermediate Y	third reagent	final compound
A/1	HOCH ₂ CHO	$\begin{array}{c} PCl_3\\ PCl_5\\ SOCl_2\\ etc. \end{array}$	C <i>I</i> CH₂CHO	K ₂ Cr ₂ O ₇ /H ⁺ KMnO₄/H ⁺ KMnO₄/OH [−] Tollens' or Fehling's reagents	C <i>I</i> CH₂CO₂H	NH ₃	H ₂ NCH ₂ CO ₂ H
A/2	HOCH ₂ CHO	HBr P/Br₂ etc.	BrCH₂CHO	K ₂ Cr ₂ O ₇ /H ⁺ KMnO ₄ /H ⁺ KMnO ₄ /OH [−] Tollens' or Fehling's reagents	BrCH₂CO₂H	NH ₃	H ₂ NCH ₂ CO ₂ H
B/1	HOCH₂CHO	PC <i>l</i> ₃ PC <i>l</i> ₅ SOC <i>l</i> ₂ etc.	C/CH₂CHO	NH ₃	H ₂ NCH ₂ CHO	K ₂ Cr ₂ O ₇ /H ⁺ KMnO ₄ /H ⁺ KMnO₄/OH ⁻ Tollens' or Fehling's reagents	H ₂ NCH ₂ CO ₂ H
B/2	HOCH₂CHO	HBr P/Br₂ etc.	BrCH₂CHO	NH₃	H ₂ NCH ₂ CHO	K ₂ Cr ₂ O ₇ /H ⁺ KMnO₄/H ⁺ KMnO₄/OH ⁻ Tollens' or Fehling's reagents	H ₂ NCH ₂ CO ₂ H
с	HOCH₂CHO	Tollens' or Fehling's reagents	HOCH ₂ CO ₂ H	KBr/conc. H₂SO₄	BrCH₂CO₂H	NH₃	H ₂ NCH ₂ CO ₂ H
mark		(1)	(1)	(1)	(1)	(1)	

[5] [Total: 14]