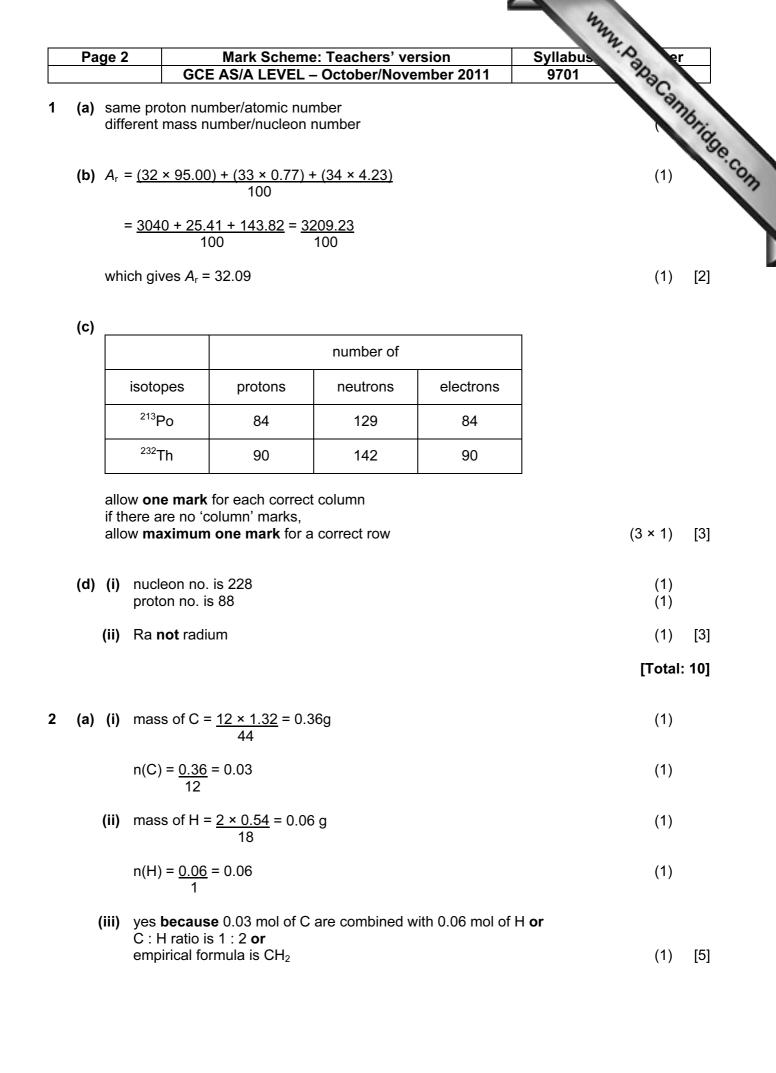
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level

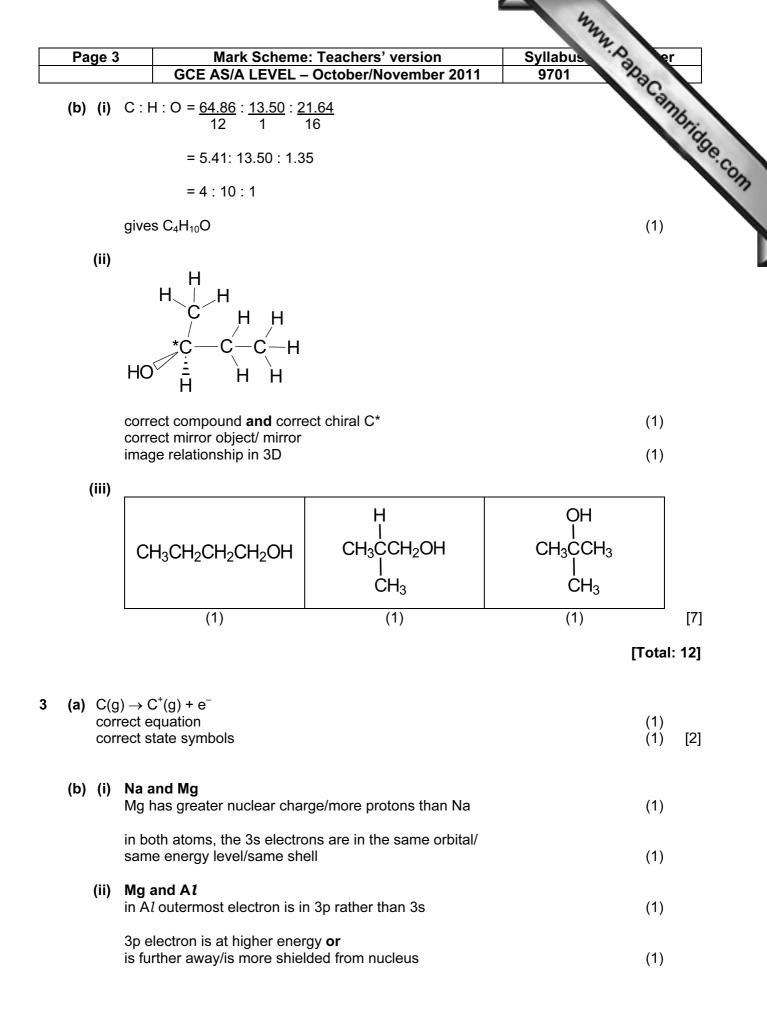
www.papaCambridge.com MARK SCHEME for the October/November 2011 question paper

for the guidance of teachers

9701 CHEMISTRY

9701/23


Paper 2 (AS Structured Questions), maximum raw mark 60


This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 4		Syllabus	. S.	er			
	GCE AS/A LEVEL – October/November 2011	9701	Day				
(iii)	He and Ne both He and Ne have the highest nuclear charges in their P	eriod	MMM. PapaCo	mbrid			
(iv)	He, Ne, and Ar						
	going down the group,						
	valence/outer shell electrons are farther from the nucleus						
	there is greater shielding						
	attraction between valence electrons and nucleus is less or effective nuclear charge is less		(1)	[8]			
(c) (i)	from Na to C/ increased nuclear charge/nuclear attraction		(1)				
(ii)	cation has fewer electrons than atom or cation has lost outer electrons or cation has fewer shells		(1)				
	but cation has same nuclear charge as atom or proton number is the same		(1)	[3]			

3 (d) ignore any state symbols

MgO(s)	+	NaOH(aq)			\rightarrow	NO REACTION	(1)
MgO(s)	+	2 HC <i>l</i> (aq)			\rightarrow	MgCl ₂ + H ₂ O	(1)
$Al_2O_3(s)$	+	2 NaOH(aq)	+	3 H ₂ O(I)	\rightarrow	2 NaA <i>l</i> (OH) ₄ or	
$Al_2O_3(s)$	+	2 NaOH(aq)	+	H ₂ O(I)	\rightarrow	2 NaA <i>l</i> O ₂ + 2H ₂ O or	(1)
$Al_2O_3(s)$	+	6 NaOH(aq)	+	3 H ₂ O(I)	\rightarrow	2 Na₃A <i>l</i> (OH) ₆	
$Al_2O_3(s)$	+	6 HC <i>l</i> (aq)			\rightarrow	2 A <i>l</i> C <i>l</i> ₃ + 3 H ₂ O or	(1)
Al ₂ O ₃ (s)	+	6 HC <i>l</i> (aq)			\rightarrow	$Al_2Cl_6 + 3H_2O$	(1)
SO ₂ (g)	+	NaOH(aq)			\rightarrow	NaHSO₃ or	(1)
SO ₂ (g)	+	2 NaOH(aq)			\rightarrow	$Na_2SO_3 + H_2O$	(1)
SO ₂ (g)	+	HC <i>l</i> (aq)			\rightarrow	NO REACTION	(1)
·							

[Total: 19]

(1)


4 (a) (i) C₂H₅O

(ii)

∕____OH

(1) [2]

Page 5	5 N	Mark Scheme: Teachers' version	Syllabus 20 er	-
		S/A LEVEL – October/November 2011	9701 %	
(b) (i)	or structural is		Syllabus 9701 m	bids
(ii)				
	compound	type of isomerism		
	Р	<i>cis-trans</i> or geometrical		
	т	optical		
			(1 + 1)	[3]
(c) (i)	dehydration/eli	imination	(1)	
(ii)	conc. H ₂ SO ₄ /	P_4O_{10} / Al_2O_3 / H_3PO_4 / pumice	(1)	
(iii)	CH ₂ =CHCH=C	CH ₂		
	allow CH ₂ =C=0	CHCH₃	(1)	[3]
(d) (i)	CH ₃ CH ₂ CH(OF	H)CH ₂ CH ₃	(1)	
(ii)	steam conc. H ₂ SO ₄	with H ₃ PO ₄ catalyst or then water	(1 + 1)	
	only allow cond	dition mark if reagent mark has been giver	1	
(iii)	$Cr_2O_7^{2-}/H^+$ or MnO_4^-/H^+		(1)	[4]
			[Total	
			•	•
(a) V is	s HCHO		(1)	[1]
(b) (i)	ester		(1)	
	W is HCO ₂ CH ₃	3	(1)	[2]
(c) (i)	X is HOCH ₂ CH		(1)	
	Y is HO ₂ CCH ₂		(1)	[2]

