www.papacambridge.com MARK SCHEME for the October/November 2011 question paper

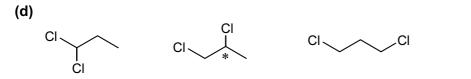
for the guidance of teachers

9701 CHEMISTRY

9701/41

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.


Mark schemes must be read in conjunction with the question papers and the report on the examination.

Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

				Mary .	
	Page 2		Teachers' version	Syllabus Syllabus	r
		GCE A LEVEL – O	ctober/November 2011	9701 230	
1	(a) (i)	<i>either</i> burn <i>or</i> shine light/uv on mixture of $H_2 + Cl_2$ <i>but</i> NOT heat		OT heat	16.
	(ii)	red/orange/brown colour of bi steamy/misty/white fumes pro container gets warm/hot		$\frac{\text{Syllabus}}{9701}$ OT heat bears H-Cl = 431	1038 Com
	(iii)	H-H = 436	C <i>l</i> -C <i>l</i> = 244	H-C l = 431	
		∆H = 436 + 244 – 2(431)	$= -182 \text{ kJ mol}^{-1}$		[2]
		H-H = 436	Br-Br = 193	H-Br = 366	-
		$\Delta H = 436 + 193 - 2(366)$	$= -103 \text{ kJ mol}^{-1}$		[2]
	(iv)	H-Br bond is weaker than the	H-C <i>l</i> bond – allow convers	se.	[1] [8]
	(b) (i)	light			[1]
	(ii)	bonds broken = C-H & I-I			
		bonds made = C-I & H-I ΔH		iol ⁻¹	[2]
	(iii)	The overall reaction is end formed <i>or</i> high E _{act}	othermic <i>or</i> no strong bo	nds/only weak bonds are	[1]
					[4]
	(c) (i)	homolytic fission is the break odd-electron species	king of a bond to form (two	o) radicals/neutral species/	[1]

[1] [1] **[3]** (ii) •CH₂C*l* the C-Br bond is the weakest or needs least energy to break/breaks most easily

CICI

4 structures: [2] 2 or 3 structures: [1]

[1] **[3]**

[Total: 18]

Correct chiral atom identified

Pa	Page 3		ge 3 Mark Scheme: Teachers' version Sy		er
			GCE A LEVEL – October/November 2011	Syllabus 9701 Aba	
(a)	(i)		⁻ w.r.t. [CH₃CHO] = 1 ⁻ w.r.t. [CH₃OH] = 1		ambridge.
			w.r.t. [OH₃OH] = 1 · w.r.t. [H ⁺] = 1		1990
	(ii)	rate =	k[CH₃CHO][CH₃OH][H ⁺]		[1] 9
	(iii)	units	= mol ⁻² dm ⁶ s ⁻¹		[1]
	(iv)	rate w	vill be 2 × 4 = 8 times as fast as reaction 1 (relative ra	te = 8)	[1] [6]

(b)

	[CH ₃ CHO] /mol dm ⁻³	[CH ₃ OH] /mol dm ⁻³	[H ⁺] /mol dm ⁻³	[acetal A] /mol dm ⁻³	[H ₂ O] /mol dm ⁻³
at start	0.20	0.10	0.05	0.00	0.00
at equilibrium	(0.20 – x)	(0.10 – 2x)	0.05	x	x
at equilibrium	0.175	0.05	0.05	0.025	0.025

(i) 3 values in second row $3 \times [1]$ (ii) 4 values in third row $4 \times [1]$ (iii) $K_c = \{[acetal A][H_2O]\}/\{[CH_3CHO][CH_3OH]^2\}$ [1](iv) $K_c = 0.025^2/(0.175 \times 0.05^2) = 1.4(3) \text{ (mol}^{-1} \text{ dm}^3)$ [1]

[max 9]

[Total: 15]

Page 4	Mark Scheme: Teachers' version	Syllabus er
	GCE A LEVEL – October/November 2011	9701 42
(a) for exar	nple also allow d _{z2}	Syllabus 9701 Brocenthride
	\sim	
\bigcirc	d _{xy}	
I		shape (4 lobes) [1] correct label e.g. d _{xy} [1] [2]
(b) (i)		
	↑ f	
	E	
	Marks	are for 5 degenerate orbitals [1] and 3:2 split [1]
E =	our due to the absorption of light NOT emitted light hf <i>or</i> photon's energy = E in above diagram ctron promoted from lower to higher orbital	[1] [1] [1]
	e of ΔE depends on the ligand ΔE changes, so does f in E = hf	[1] [1] [7]
(c) (i) O.N	I.(carbon) = +3 (4 × (-2) + 2x = -2, thus $2x = +6$)	[1]
(ii) O.N	I. = +3	[1]
(iii)		
(ii) O.N		

0

0

0

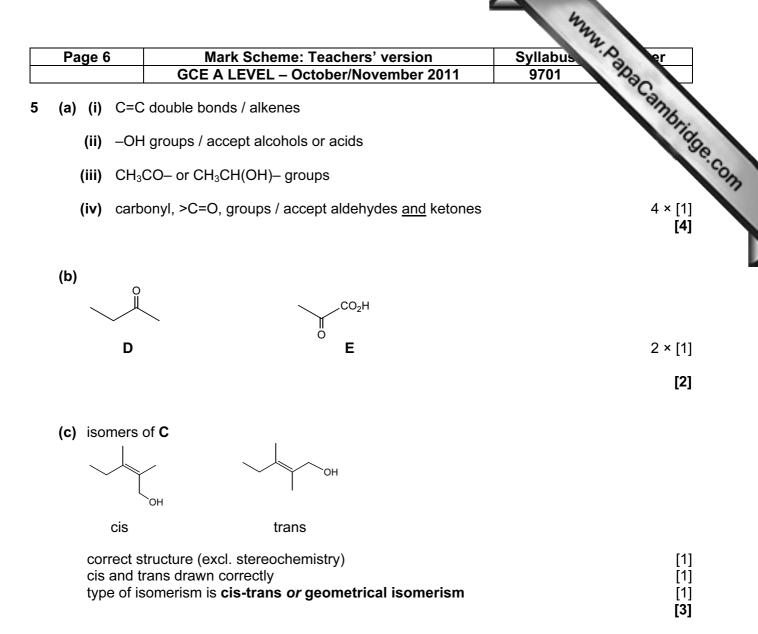
(iv) $\underline{2} K_3 \operatorname{Fe}(C_2O_4)_3 \rightarrow \underline{3} K_2C_2O_4 + \underline{2} \operatorname{Fe}C_2O_4 + \underline{2} \operatorname{CO}_2$ [2] $Or K_3 \operatorname{Fe}(C_2O_4)_3 \rightarrow \underline{3/2} K_2C_2O_4 + \operatorname{Fe}C_2O_4 + \operatorname{CO}_2$

[max 5]

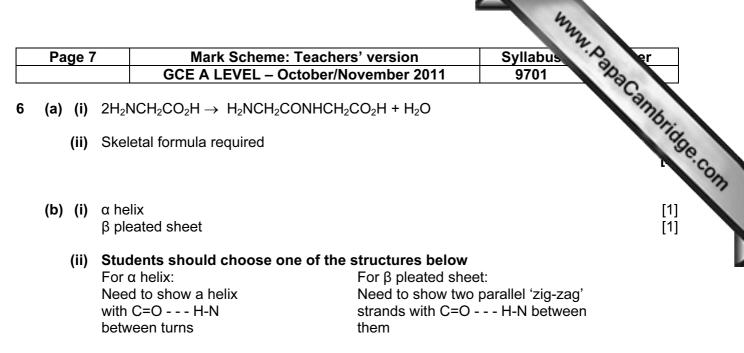
[2]

Page 5	5 Mark Scheme: Teachers' version Syllabus		Syllabus 😪 e	r		
		GCE A LI	EVEL – October/N	lovember 2011	9701 230	
		+ HA \rightarrow instead of		A can be H_2O , HC l e	Syllabus 9701 tc.)	nbrides
(ii)	most	basic		least basic		
	ethyla	amine	ammonia	phenylamine		
				I		[1]
(iii)			lue to electron-dor due to delocalisa	ating ethyl/alkyl grou		[1] [1]
			,			[4]
(b) (i)	C ₆ H₅OH ·	+ OH [−] →	C ₆ H ₅ O [−] + H ₂ O (<i>oi</i>			
	pKa of ni more that	itrophenol n phenol	$C_6H_5O^- + H_2O$ (or is smaller/K _a is la	⁻ with Na ⁺ /H₂O/A ⁻) arger because it's a s	stronger acid/dissociates	[4]
	pKa of ni more that stronger	itrophenol n phenol	C ₆ H₅O [−] + H₂O (<i>or</i> is smaller/K _a is la he anionic charge	⁻ with Na ⁺ /H₂O/A ⁻) arger because it's a s	C	[4] [1]
(ii)	pKa of ni more that stronger	itrophenol n phenol because tl n-withdrav	C ₆ H₅O [−] + H₂O (<i>or</i> is smaller/K _a is la he anionic charge	⁻ with Na ⁺ /H₂O/A ⁻) arger because it's a s	stronger acid/dissociates	[4] [1] [1]

(c) (i) **B** is phenyldiazonium cation, $C_6H_5-N^+\equiv N$


(ii)

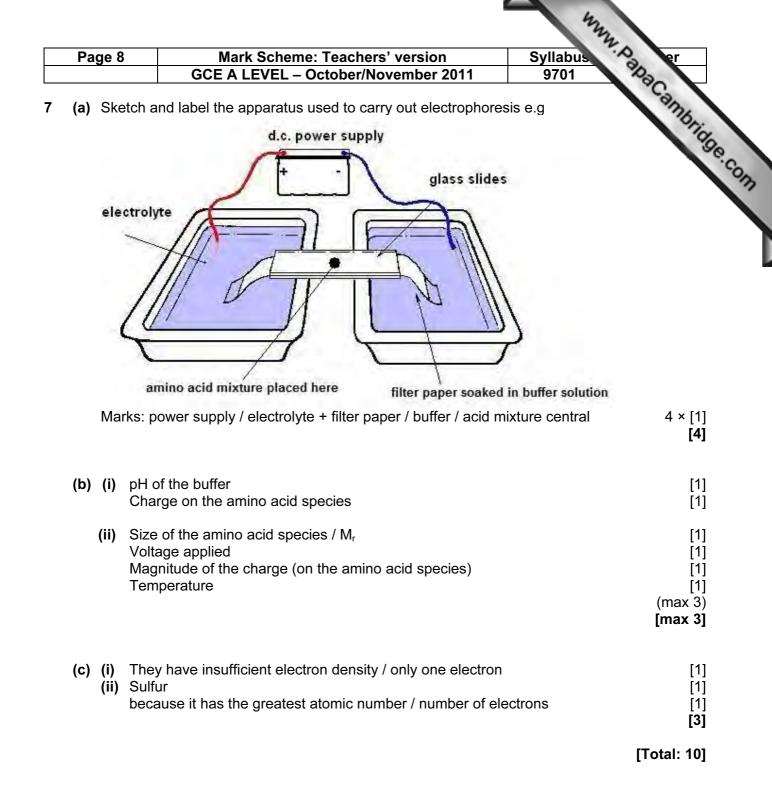
′ —			
	reaction	reagent(s)	conditions
	Step 1	NaNO ₂ + HC <i>1</i> or HNO ₂ [1]	T < 10°C [1]
	Step 2	H₂O / aq	heat/boil/T > 10° (both) [1]
	Step 3	HNO₃ NB HNO₃(aq) OK for both	dilute (both) [1]
			ГА


[4] **[5]**

[1]

[Total: 14]

[Total: 9]


Whichever is chosen, overall structure [1] position of H bonds [1]

[4]

(c)			
	amino acid residue 1	amino acid residue 2	type of bonding
	-HNCH(CH ₂ CH ₂ CH ₂ CH ₂ NH ₂)CO-	HNCH(CH ₂ CH ₂ CO ₂ H)CO–	lonic bonds or hydrogen bonds
	-HNCH(CH ₃)CO-	–HNCH(CH ₃)CO–	van der Waals'
	–HNCH(CH₂SH)CO–	-HNCH(CH ₂ SH)CO-	Disulfide bonds
	-HNCH(CH ₂ OH)CO-	-HNCH(CH ₂ CO ₂ H)CO-	Hydrogen bonds

[4]

[Total: 10]

Page 9	Mark Scheme: Teache		Syllabus
	GCE A LEVEL – October/N	lovember 2011	9701
a)			
	traditional material	modern polyn	ner used
P	aper/cardboard/wood/leaves hessian/hemp/jute steel/aluminium	PVC in pac	Syllabus 9701 ner used kaging
	Cotton/wool/linen	<i>Terylene</i> in	fabrics
Glas	ss/china/porcelain/earthenware metal/leather	Polycarbona	te bottle

 $^{3 \}rightarrow 2$ marks, $2 \rightarrow 1$ mark [2]

(b)	Rea	asons: Plastics/polymers pollute the environment for a long time do not decor biodegrade quickly They are mainly produced from oil Produce toxic gases on burning	npose/ [1] [1] [1] max two		
		ategy 1: Recycle polymer waste / use renewable resources ategy 2: Develop biodegradable polymers	[1] [1] [max 3]		
(c)	PVC Combustion would produce HC <i>l</i> / dioxins as a pollutant or nylon/acrylic				
	Coi	mbustion would produce HCN	[1] [2]		
(d)	(i)	Polythene (or other addition polymer)	[1]		
	(ii)	[1]			
	The polymer chains don't have strong bonds between them – easy to melt Could be answered with a suitable diagram		[1] [3]		
			[Total: 10]		