www.papacambridge.com MARK SCHEME for the October/November 2011 question paper

for the guidance of teachers

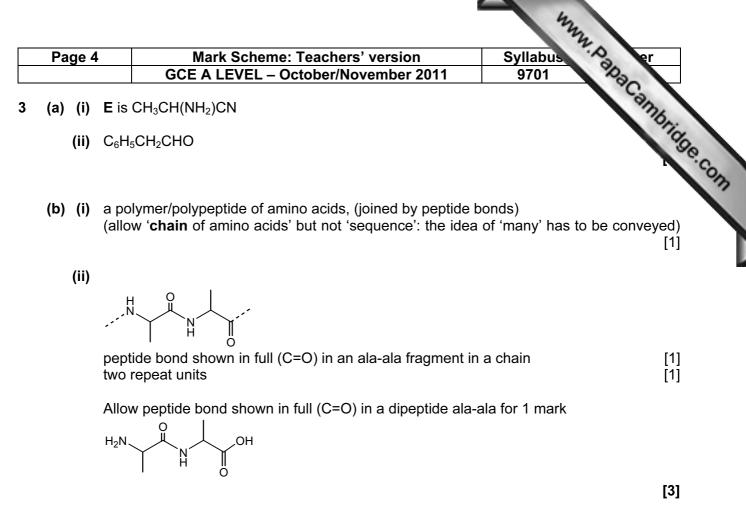
9701 CHEMISTRY

9701/43

Paper 4 (A2 Structured Questions), maximum raw mark 100

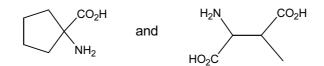
This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

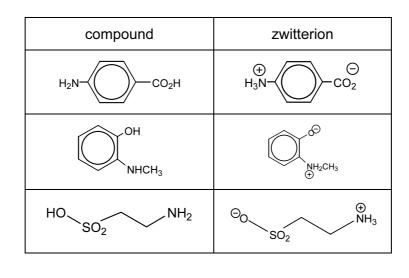

Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

			Mar .
	Page 2	Mark Scheme: Teachers' version	Syllabus er
		GCE A LEVEL – October/November 2011	9701 23
1	(a) Cr³⁺ Mn²	: 1s²2s²2p ⁶ 3s² 3p ⁶ 3d³ ⁺: 1s²2s²2p ⁶ 3s² 3p ⁶ 3d⁵	Syllabus 9701 Paper 9701 Paper
	(b) (i)	 Any two from H⁺ is on the oxidant/L.H. side of each of the ½-equations (increasing [H⁺]) will make E^e more positive (increasing [H⁺]) will drive the reaction over to the R.H direction 	
			[1] + [1]
	(ii)	$KMnO_4$: Purple/violet to colourless (allow <u>verv</u> pale pink) $K_2Cr_2O_7$ Orange to green	[1] [1] [4]
	(c) (i)	$MnO_2 + SO_2 \longrightarrow MnSO_4 (or Mn^{2+} + SO_4^{2-})$	[1]
		manganese changes/is reduced from +4 to +2 sulfur changes/is oxidised from +4 to +6	[1] [1]
	(ii)	No effect , because H^+ does not appear in the overall economy MnO_2/Mn^{2+} change is cancelled out by its effect on the SO_2/S	
	(d) (i)	$MnO_2 + 4H^+ + Sn^{2+} \longrightarrow Mn^{2+} + 2H_2O + Sn^{4+}$	[1]
	(ii)	$n(MnO_4^-) = 0.02 \times 18.1/1000 = 3.62 \times 10^{-4} \text{ mol}$ $n(Sn^{2^+}) = 3.62 \times 10^{-4} \times 5/2 = 9.05 \times 10^{-4} \text{ mol}$ $n(Sn^{2^+})$ that reacted with $MnO_2 = (20 - 9.05) \times 10^{-4} = 1.095 \times 10^{-4}$	[1] [1] 10 ⁻³ mol [1]
		reaction is 1:1, so this is also $n(MnO_2)$ mass of $MnO_2 = 1.095 \times 10^{-3} \times (54.9+16+16) = 0.0952 g$ \Rightarrow 95% – 96%; 2 or more s.f.	[1] [1] [6]


[Total: 16]

Page 3	Mark Scheme: Teachers' version Sy	llabus of er
	GCE A LEVEL – October/November 2011	701 23
	nolecule/ion/species with a lone pair (of electrons) <i>or</i> electron that bonds to a metal ion/transition element	Ilabus 701 pair donor
(ii) t	y means of a dative/coordinate (covalent) bond	[2]
(b) (i) str	aight line from (0, 0.01) to point at (350, 0.0028) with all points	on the line [1]
	order w.r.t. $Cr(CO)_6$ is 1 and order w.r.t. PR_3 is zero	
or	cause (a) $Cr(CO)_6$ graph has a constant half-life (which is 700 construction lines on graph showing this)	[1]
	cause (b) PR ₃ graph is a straight line (of constant slope) <i>or</i> lin reaction <i>or</i> no change in rate <i>or</i> shows a linear decrease	e snows a constant rate [1]
(iii) rat	$e = k[Cr(CO)_6]$	[1]
k =	(0.9 – 1.1) × 10^{−3} (s ^{−1}) (one or more s.f.)	[1]
	her rate ₀ = $0.01/1020 = 9.8 \times 10^{-6} \text{ mol sec}^{-1}$ when $[Cr(CO)_6] =$ so k = $9.8 \times 10^{-6}/0.01 = 9.8 \times 10^{-4}$ $t_{1/2} \approx 700 \text{ sec}$ k = $0.693/700 = 9.9 \times 10^{-4}$	0.01 mol dm ⁻³
(iv) (u	its of k are) sec⁻¹	[1]
• • •	B. the chosen mechanism must be consistent with the rate equater if rate = $k[Cr(CO)_6]$	uation in (iii) . Thus:
me	chanism B is consistent	[1]
	cause it's the only mechanism that does NOT involve PR ₃ in i p <i>or</i> only Cr(CO) ₆ is involved in slow step <i>or</i> [PR ₃] does not af	
or		
	ate = $k[Cr(CO)_6][PR_3]$, then	[4]
	chanism A or C or D is consistent cause both reactants are involved in slow step	[1] [1]
		[9]

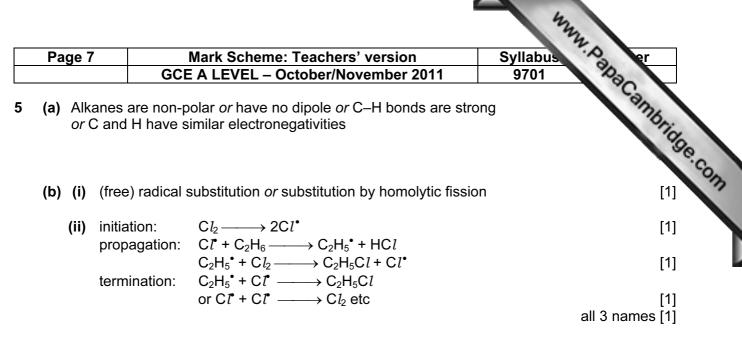

(c) (i) $HCl or H_2SO_4 or NaOH or H^+ or OH^-$ reagents [1] + heat and H_2O/aq (allow H_3O^+). If T is quoted, 80 °C < T < 120 °C. NOT warm. conditions [1]

(ii)

(if a structural formula, it must have all H atoms) allow protonated or deprotonated versions [1] + [1] [1] [1]

Page 5		Mark Scheme: Teachers	' version	Syllabus	P er
	GC	E A LEVEL – October/Nov	vember 2011	9701	MMM. Papac
d) (i) NH ₃	⁺–CH(C⊦	$+_3)-CO_2^-$			813,
d) (i) NH₃	⁺–CH(C⊦	$H_3)-CO_2^-$			SIMBI
d) (i) NH₃ (ii)	⁺–CH(C⊦	H ₃)–CO ₂ [−]	1		embridge
d) (i) NH₃ (ii)	⁺–CH(C⊦	H ₃)–CO ₂ [–]	zwitterior		ambridge

[3] **[4]**


(e) (i)	A buffer is a solution whose pH stays fairly constant <i>or</i> which maintains same pH <i>or</i> which resists/minimises changes in pH when small/moderate amounts of acid/H ⁺ or alkali/OH ⁻ are added	roughly the [1] [1]
(ii)	$NH_2CH(CH_3)CO_2H + H(Cl) \longrightarrow {}^+NH_3CH(CH_3)CO_2H (+ Cl^-)$	[1]
(iii)	blood contain HCO_3^- (<i>or</i> in an equation) which absorbs H ⁺ or equn H ⁺ + HCO ₃ ⁻ > H ₂ CO ₃ (H ₂ O + CO ₂)	[1]
	or absorbs OH^- or equin $OH^- + HCO_3^- \longrightarrow CO_3^{2-} + H_2O$	[1]
(iv)	$[CH_3CO_2Na] = 0.05 [CH_3CO_2H] = 0.075$ pH = 4.76 + log (0.05/0.075) = 4.58 or 4.6	[1] [1] [7]

[Total: 19]

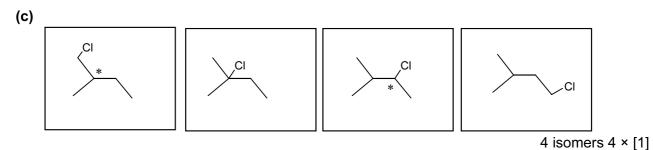
			Syllabus 9701 Bubac
	Page 6	Mark Scheme: Teachers' version	Syllabus Ser
		GCE A LEVEL – October/November 2011	9701 22
4	(a) Ca(NO ₃)	$C_2 \longrightarrow CaO + 2NO_2 + \frac{1}{2}O_2$	iro a higher temperature to co
	decompo as size/r	he group) nitrates become more stable or requise ose radius of (cat) ion increases or charge density of ion de isation/distortion of anion/nitrate decreases	[1]
	(c) (i) Li ₂ C	$O_3 \longrightarrow Li_2O + CO_2$	[1]

- (ii) radius of Li ion/Li⁺ is less than that of Na ion/Na⁺ (or polarising power of M⁺ is greater) [1]
- (iii) Brown/orange fumes/gas would be evolved *or* glowing splint relights [1] Since the nitrate is likely to be thermally unstable *or* decomposes (just like the carbonate) *or* the balanced equation: $2\text{LiNO}_3 \longrightarrow \text{Li}_2\text{O} + 2\text{NO}_2 + \frac{1}{2}\text{O}_2$ [1] [4]

[Total: 8]

(iii)

stru	ctural formula of by-product	formed by
C	CH₂CI–CH₂CI (or isomer)	further substitution
	CH ₃ CH ₂ CH ₂ CH ₃	(termination of 2 ×) C₂H₅•
CH	₃ CH ₂ CH ₂ CH ₂ CI (or isomer)	substitution of C₄H₁₀ by-product


[3]

accept in the "formed by" column the formulae of radicals that will produce the compound in the "by-product" column, or the reagents, e.g. $C_4H_9^{\bullet} + Cl_2 \text{ or } C_4H_9^{\bullet} + Cl^{\bullet} \text{ or }$ $C_4H_{10} + Cl_2$ (giving $CH_3CH_2CH_2CH_2CI$).

do not allow anything more Cl-substituted than dichlorobutane. N.B. C_2H_5Cl is the **major** product, not a **by**-product, so do not allow C_2H_5Cl .

(iv) J/K = 2.3 : 1 or 7:3 or 21:9 [2] (reason: straightforward relative rate suggests 21:1, but there are 9 primary to 1 tertiary, so divide this ratio by 9. 21/9 = 2.33) allow [1] mark if J/K ratio is given as 21:1;

[10]

2 chiral atoms identified correctly, even in incorrect structures

[Total: 16]

[1] + [1] [max 5]

Page 8		Scheme: Teachers' version	Syllabus er
	GCE A LE	EVEL – October/November 2011	9701 230
(a) (i)		(only) one to contain nitrogen <i>or</i> it's an a ontains CO ₂ H <i>or</i> NH groups	Syllabus 9701 amino acid polysaccharide
(ii)	molecule: J , <i>or</i> molecule: L ,	polymer: RNA (not DNA) polymer: starch, cellulose, glycogen or p (not carbohydrate)	polysaccharide
			[2
(b) (i)	Covalent bonding		[1
(ii)	Hydrogen bonding		[1
(iii)	lonic/electrovalent b	oonding <i>or</i> disulphide/–S–S– bonding <i>or</i>	van der Waals' forces [1 [3]
(c) (i)	Enzymes		[1
(ii)		T decrease; T > 40 °C or "too high" are C metal ions <i>or</i> specific, e.g. Hg ²⁺ , Ag ⁺ . Pb	
	change in pH disrup or metal ions disrup or metal ions disrup or heating disrupts	t ionic bonds t −S−S− bonds	
			any one [1
This cha	anges: the 3D structu	ure <i>or</i> shape of the enzyme <i>or</i> the active	site [1 [max 4]

[Total: 9]

		www.
Page 9	Mark Scheme: Teachers' version	Syllabus of er
	GCE A LEVEL – October/November 2011	9701 23

7 (a)

structural information	analytical technique	onig
three-dimensional arrangement of atoms and bonds in a molecule	X-ray crystallography/diffraction	
chemical environment of protons in a molecule	NMR (spectroscopy) only	
identity of amino acids present in a polypeptide	Electrophoresis / chromatography / mass spectrometry	
	1	[1] + [1] + [1] [3]

(b) (i) paper chromatography;

The components **partition** between the solvent/moving phase and the water/liquid stationary phase *or* separation relies on different solubilities (of components) in the moving solvent and the stationary water phase. [1]

(ii) thin-layer chromatography.
 Separation depends on the differential adsorption of the components onto the solid particles/phase or Al₂O₃ or SiO₂.

[2]

[1]

- (c) (i) No. of carbon atoms present = $\frac{0.2 \times 100}{5.9 \times 1.1}$ = 3.08 hence 3 carbons [1]
 - (ii) Bromine
 - (iii) One bromine is present as there is only an M+2 peak / no M+4 peak *or* the M and M+2 peaks are of similar height [1]
 - (iv) NMR spectrum shows a single hydrogen split by many adjacent protons and 6 protons in an identical chemical environment. This suggests...
 two -CH₃ groups and a lone proton attached to the central carbon atom [1]

Empirical formula of **N** is C_3H_7Br

Hence N is $(CH_3)_2CHBr$ or H CH₃-C-CH₃

Br

[1]

[1]

[6]

[Total: 11]

Pa	ge 10			Syllabus 2	er
		GCE A LEVEL – October/	November 2011	9701 23	
(a)	(i)	Soluble form would be most effective		Syllabus 9701 face area through the upper part	amb.
	(ii)	Q , since the 'mini-pills'/granules/pow	der have a larger sur	face area	19
		or P, because it has no protective ca	sing		
	(iii)	The gel coat stops it being broken digestive system/stomach	down while passing	through the upper part	of the
		or the gel coat is stable to stomach a	cid.		[1] [3]
(b)		drug is taken quickly/directly to the ta			[1]
	OF I	nore accurate dosing can be achieved			[1]
		en the drug is taken by mouth it has to bloodstream. <i>or</i> some is digested/lost		comach/intestine wall to g	[1]
					[2]
(c)	(i)	condensation (polymerisation)			[1]
	(ii)	hydrogen bonds <i>or</i> van der Waals'			[1]
	(iii)	It would change the overall shape of	()		41 . 541
		The 'fit' into the active site would be I	ess effective	[1] + [1]
	(iv)	Hydrolysis			[1]
					[5]
				[Tot	al: 10]
				-	_