UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level

www.papacambridge.com MARK SCHEME for the May/June 2012 question paper

for the guidance of teachers

9701 CHEMISTRY

9701/22

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

			Syllabus 9701 (1) (1) (1)
	Page 2	Mark Scheme: Teachers' version	Syllabus Syllabus
		GCE AS/A LEVEL – May/June 2012	9701 22
1	(a) (i)	silicon/Si or phosphorus/P	Camb.
	(ii)	sodium or sulfur name required	(1) 36
	(iii)	white solid formed/white fumes seen chlorine gas decolourised	Com
		aluminium glows or burns	any two (2)
	(iv)	$2Al(s) + 3Cl_2(g) \rightarrow Al_2Cl_6(s)$ or	1
	()	$2Al(s) + 3Cl_2(g) \rightarrow 2AlCl_3(s)$	
		equation	(1)
		state symbols	(1)
	(v)	outer shell of electrons is full/has a complete octet or valence shell of electrons is full/has a complete octet or activation energy is too high or	
		ionisation energy is too high	(1) [7]

(b) (i)

	element	Does the chloride dissolve or react?	approximate pH of the resulting solution		
	Na	dissolve	7		
	Al	react	1 to 4		
	Si	react	1 to 4		
	one mark for eacl	h correct answer	(6 × 7	1)	
(ii)	hydrolysis		(*	1)	[7]
(c) (i)		m there is only one lone pa m there are two lone pairs	ir both (*	1)	
(ii)	angle (a) or sulfu	r – <mark>no mark for this</mark>			
	lone pair-lone pai	e pairs repel more than one r repulsions are stronger nd pair repulsions		1)	[2]
			[То	tal:	16]

Page		Syllabus er
	GCE AS/A LEVEL – May/June 2012	9701 73
the on is	$H_3OH(I) + {}^{3}\!/_2O_2(g) \rightarrow CO_2(g) + 2H_2O(I)$ e enthalpy change/heat change/heat evolved when ne mole of CH ₃ OH completely burned or burned in an excess of air/oxygen	Syllabus Para 9701 Abacambridge (1) [3]
= -	H ^e _{reaction} = –283 + 2(–286) – (–726) –129 kJ mol ^{–1} prrect sign	(1) (1) (1) [3]
inc by	ressure creases rate / increasing frequency of collisions or / increasing concentration of reactants	(1) (1)
inc	e mperature creases rate ecause more molecules have energy > <i>E</i> _a	(1) (1)
inc	a talyst creases rate / providing an alternative route of lower <i>E</i> _a	(1) (1) [6]
		[Total: 12]

Page 6		Mark Scheme: Teachers' version GCE AS/A LEVEL – May/June 2012				Syllabus	· ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	·
	GCE /	AS/A LEVE	:L – May/.	June 2012		9701	NºC.	Y
(a)							8	36.
reag	gent R₂CHOH	I RCHO	RCO₂H	RCO₂R'	RCOR'			10
NaH	CO ₃		\checkmark				ww.papaCarr	
	a √		\checkmark					
Cr ₂ O	₇ ^{2−} /H ⁺ ✓	\checkmark						
give o	ne mark for each	correct tick	((5 × 1)	[5]
Ū							, , , , , , , , , , , , , , , , , , ,	
	cohol or ROH o t hydroxyl or ph	enol or -O	н				(1)	
							(1)	
(ii) n(H_2) = $\frac{80}{24000}$ =	3.3 × 10 [∹]	³ mol				(1)	
n(H atoms) = 2 ×	3 3 × 10 ⁻³ ı	mol = 6.6	× 10 ⁻³ mo	I		(1)	
·	, , , , , , , , , , , , , , , , , , ,				•		(')	
(iii) n($\mathbf{G}) = \frac{0.30}{90} = 3$.3 × 10 ⁻³ m	ol					
n(G) : n(H atoms)	= 3.3 × 10	⁻³ : 6.6 × ⁷	10 ⁻³				
=	1:2 each –OH group						(1)	[4]
		- p					(-)	r.1
(c) (i)								
R.	>c≕o or >	c—o or	>	o and ' k e	otone'		(1)	
(m) =					tone		(1)	
	is HOCH ₂ COCH low the <i>gem</i> diol			1			(1)	[2]
(d) (i) H	is HO ₂ CCOCO ₂ H	l as the mi	nimum				(1)	
(ii) J	is HOCH₂CH(OH)CH ₂ OH as	s the minir	mum			(1)	[2]