MARK SCHEME for the May/June 2012 question paper for the guidance of teachers

9701 CHEMISTRY

9701/22
Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

1 (a) (i) silicon/Si or phosphorus/P
(ii) sodium or sulfur name required
(iii) white solid formed/white fumes seen chlorine gas decolourised
aluminium glows or burns

> any two (2)
(iv) $2 \mathrm{Al}(\mathrm{s})+3 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{Al}_{2} \mathrm{Cl}_{6}(\mathrm{~s})$ or $2 \mathrm{Al}(\mathrm{s})+3 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{AlCl}_{3}(\mathrm{~s})$ equation
state symbols
(v) outer shell of electrons is full/has a complete octet or valence shell of electrons is full/has a complete octet or activation energy is too high or ionisation energy is too high
(b) (i)
element

Na	dissolve	7
Al	react	1 to 4
Si	react	1 to 4

one mark for each correct answer
(ii) hydrolysis

approximate pH of the resulting solution

Page 3	Mark Scheme: Teachers' version	Syllabus
	GCE ASIA LEVEL - May/June 2012	9701

2 (a) $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{I})+{ }^{3} / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
the enthalpy change/heat change/heat evolved when one mole of $\mathrm{CH}_{3} \mathrm{OH}$
is completely burned or
is burned in an excess of air/oxygen
(b) ΔH^{\ominus} reaction $=-283+2(-286)-(-726)$
$=-129 \mathrm{~kJ} \mathrm{~mol}^{-1}$
correct sign
(c) pressure
increases rate
by increasing frequency of collisions or
by increasing concentration of reactants

temperature

increases rate
because more molecules have energy $>E_{a}$
catalyst
increases rate
by providing an alternative route of lower E_{a}

Page 4	Mark Scheme: Teachers' version	Syllabus
	GCE AS/A LEVEL - May/June 2012	9701

3 (a)

give one mark for each correct compound
$(6 \times 1) \quad[6]$
(b) malic acid into \mathbf{C} dehydration or elimination
C into D oxidation \mathbf{C} into $\mathbf{E} \quad$ addition or hydration
(c) solvents or perfumes or flavourings
(d) (i)

correct compound (malic acid) shown as a pair of enantiomers in 3D
chiral carbon $\left(^{*}\right)$ atom correctly identified
structure fully displayed
(ii)

give one for each correct skeletal formula
correct cis (or Z) and trans (or E) labels
(1) $[6]$
(e) $\mathrm{C}: \mathrm{H}: \mathrm{O}=\frac{37.5}{12}: \frac{4.17}{1}: \frac{58.3}{16}$
$=3.13: 4.17: 3.64$
= $1: 1.33: 1.16$
= $6: 8: 7$
empirical formula is $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}$

4 (a)

reagent	$\mathbf{R}_{2} \mathbf{C H O H}$	$\mathbf{R C H O}$	$\mathbf{R C O}_{2} \mathbf{H}$	$\mathbf{R C O}_{2} \mathbf{R}^{\prime}$	RCOR'
NaHCO_{3}			\checkmark		
Na	\checkmark		\checkmark		
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} / \mathrm{H}^{+}$	\checkmark	\checkmark			

give one mark for each correct tick
(b) (i) alcohol or ROH
not hydroxyl or phenol or - OH
(ii) $\mathrm{n}\left(\mathrm{H}_{2}\right)=\frac{80}{24000}=3.3 \times 10^{-3} \mathrm{~mol}$
$\mathrm{n}(\mathrm{H}$ atoms $)=2 \times 3.3 \times 10^{-3} \mathrm{~mol}=6.6 \times 10^{-3} \mathrm{~mol}$
(iii) $\mathrm{n}(\mathbf{G})=\frac{0.30}{90}=3.3 \times 10^{-3} \mathrm{~mol}$
$n(\mathbf{G}): n(H$ atoms $)=3.3 \times 10^{-3}: 6.6 \times 10^{-3}$
= 1:2
so each -OH group produces one H atom
(c) (i)

(ii) \mathbf{G} is $\mathrm{HOCH}_{2} \mathrm{COCH}_{2} \mathrm{OH}$ as the minimum allow the gem diol $\mathrm{CH}_{3} \mathrm{COCH}(\mathrm{OH})_{2}$
(d) (i) H is $\mathrm{HO}_{2} \mathrm{CCOCO}_{2} \mathrm{H}$ as the minimum
(ii) J is $\mathrm{HOCH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{OH}$ as the minimum
[Total: 13]

