WWW. Pales

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2012 question paper for the guidance of teachers

9701 CHEMISTRY

9701/23

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

		2.
Page 2	Mark Scheme: Teachers' version	Syllabus
	GCE AS/A LEVEL – May/June 2012	9701
(a) (i) from Na to C <i>1</i>		Carry

nuclear charge increases electrons are in the same shell/have the same shielding nuclear attraction increases

(ii) argon does not form any bonds/compounds or argon exists as single atoms/is monatomic

(1)

(b) (i)

radius of cation/nm		rad	ius of anion	/nm	
Na⁺	Mg ²⁺	A1 ³⁺	P ³⁻	S ²⁻	Cl⁻
0.095	0.065	0.050	0.212	0.184	0.181

(1)

(ii) cations contain fewer electrons than the corresponding atoms or cations contain fewer electrons than they do protons nucleus has a greater attraction

(1) (1)

(iii) anions contain more electrons than the corresponding atoms or anions contain more electrons than they do protons nucleus has a smaller attraction

(1) (1)

[5]

(c) (i) $Na_2O + H_2O \rightarrow 2NaOH$ $SO_2 + H_2O \rightarrow H_2SO_3$

(1)

(1)

(ii) for Na₂O 10 to 14 (1) for SO₂ 1 to 4 (1)

(iii) NaOH + $H_2SO_3 \rightarrow NaHSO_3 + H_2O$ or $2NaOH + H_2SO_3 \rightarrow Na_2SO_3 + 2H_2O$

(1) [5]

[Total: 14]

		7.
Page 3	Mark Scheme: Teachers' version	Syllabus
	GCE AS/A LEVEL – May/June 2012	9701

2 (a) (i) $Na_2CO_3 + 2HCl \rightarrow 2NaCl + H_2O + CO_2$

(ii)
$$n(HCl) = \frac{35.8}{1000} \times 0.100 = 3.58 \times 10^{-3}$$

(iii)
$$n(\text{Na}_2\text{CO}_3) = \frac{35.8}{2} \times 10^{-3} = 1.79 \times 10^{-3} \text{ mol in } 25.0 \text{ cm}^3$$
 (1)

(iv)
$$n(\text{Na}_2\text{CO}_3) = 1.79 \times 10^{-3} \times 10 = 1.79 \times 10^{-2} \text{ mol in } 250 \text{ cm}^3$$
 (1)

(v) mass of Na₂CO₃ =
$$1.79 \times 10^{-2} \times 106 = 1.90g$$

 M_r of Na₂CO₃ = 106 (1)
mass of Na₂CO₃ = $1.90 g$ (1) [6]

(b)
$$n(H_2O)$$
 in 5.13 g of washing soda = $\frac{5.13 - 1.90}{18}$ = 1.79 × 10⁻¹ mol (1)

$$n(\text{Na}_2\text{CO}_3)$$
 in 5.13 g of washing soda = 1.79 × 10⁻² mol
 $n(\text{H}_2\text{O})$: $n(\text{Na}_2\text{CO}_3)$ = 10 : 1 (1)

or

 $1.90 \text{ g Na}_2\text{CO}_3$ are combined with $3.23.\text{g H}_2\text{O}$

106 g Na₂CO₃ are combined with
$$\frac{3.23 \times 106}{1.90}$$
 = 180.2 g H₂ (1)

this is 10 mol of
$$H_2O$$
 (1)

or

 $1.79 \times 10^{-2} \text{ mol Na}_2\text{CO}_3.x\text{H}_2\text{O} \equiv 5.13 \text{ g of washing soda}$

1 mol Na₂CO₃.
$$x$$
H₂O $\equiv \frac{5.13}{1.79 \times 10^{-2}} = 286.6 g$ (1)

$$Na_2CO_3 = 106$$
 and $H_2O = 18$ hence $x = 10$ (1) [2]

[Total: 8]

D 4	Marila Oaliannaa Taraaliannaliannaa	O. Hali
Page 4	Mark Scheme: Teachers' version	Syllabus
	GCE AS/A LEVEL – May/June 2012	9701

3 (a) $CH_3OCH_3(I) + 3O_2(g) \rightarrow 2CO_2(g) + 3H_2O(I)$ the enthalpy change/heat change/heat evolved when one mole of CH_3OCH_3/a compound is completely burned or burned in an excess of air/oxygen

(1) Tage Con

(b)
$$2CH_3OH(I) \rightarrow CH_3OCH_3(g) + H_2O(I)$$

 $\Delta H^{\rm e}_{\rm f}/{\rm kJ~mol}^{-1} \quad 2(-239) \quad -184 \quad -286$
 $\Delta H^{\rm e}_{\rm reaction} = -184 + (-286) - 2(-239) \quad (1)$
 $= +8~{\rm kJ~mol}^{-1} \quad (1)$
correct sign (1)

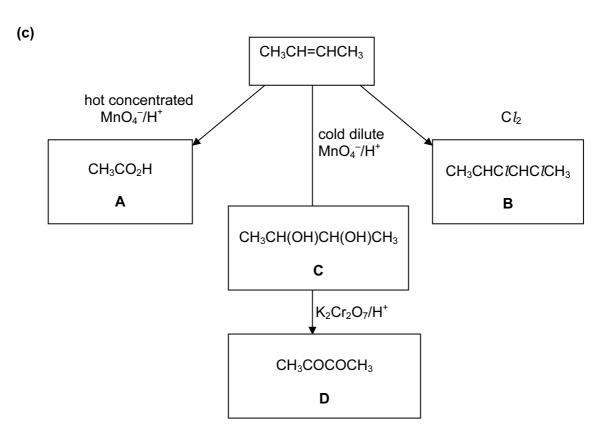
both correct (1)

(ii) structural isomerism **or** functional group isomerism (1) [2]

(d) (i) hydrogen bonds (1)

(ii) lone pair on O atom of C_2H_5OH (1)

correct dipole O^{δ^-} — H^{δ^+} on bond in one molecule of ethanol (1)


hydrogen bond shown between lone pair of an O atom and a hydrogen atom, i.e.

[Total: 12]

	Page 5	Mark Scheme: Teachers' version	Syllabus er
4		perature and high pressure	9701 AACAMA
	high tem	perature and catalyst	Trade.
		\rightarrow C ₄ H ₈ + C ₈ H ₁₈ or \rightarrow 2C ₄ H ₈ + C ₄ H ₁₀	(1) [1] COM

(b)
$$C_{12}H_{26} \rightarrow C_4H_8 + C_8H_{18}$$
 or $C_{12}H_{26} \rightarrow 2C_4H_8 + C_4H_{10}$

 (4×1) [4]

(1)

(1) (1) [3]

Page 6	Mark Scheme: Teachers' version	Syllabus	
	GCE AS/A LEVEL – May/June 2012	9701	

(e)

allow any orientation of CH₃- groups

(1) [1]

(f) (i) CH₂=CH—CH=CH₂ allow CH₃CHOHCH=CH₂ and CH₃C≡CCH₃

(1)

(ii) CH₂BrCHBrCHBrCH₂Br allow CH₃CBr₂CBr₂CH₃ from CH₃CHOHCH=CH₂ allow CH₃CHOHCHBrCH₂Br from CH₃C≡CCH₃

(1)

(iii) electrophilic addition **both** words required

(1) [3]

[Total: 14]

	Page 7	Mark Scheme: Teachers' version	Syllabus
		GCE AS/A LEVEL – May/June 2012	9701
5	(a) (i) CO	₂ /carbon dioxide	Cany
	(ii) car	boxylic acid or –CO ₂ H or –COOH	(1) Tage
	(b) (i) deh	nydration or elimination	(1)
	ì΄Hα	ontains >C=C< bond ontains –CO ₂ H group s CH ₂ =CHCO ₂ H	(1) (1) (1) [4]

(c)
$$n(\mathbf{F}) = \frac{0.600}{90} = 6.67 \times 10^{-3} \,\text{mol}$$
 (1)
F contains one –OH group and one –CO₂H group
hence one mole of F produces one mole of H₂ with Na (1)
 $n(H_2) = 6.67 \times 10^{-3} \,\text{mol}$ (1)
vol. of H₂ = 6.67 × 10⁻³ × 24000 cm³
= 160 cm³ at room temperature and pressure (1)

(d) (i)

HOCH₂CH₂CO₂H CH₃CH(OH)CO₂H

J K

one isomer correct (1)

HO₂CCH₂CO₂H CH₃COCO₂H product from J product from K

one oxidation product correct (1) [2]

[Total: 12]