UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level

www.papacambridge.com MARK SCHEME for the May/June 2012 question paper

for the guidance of teachers

9701 CHEMISTRY

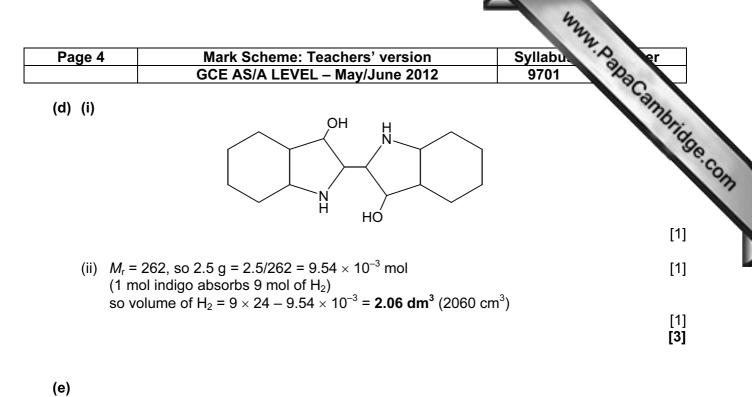
9701/43

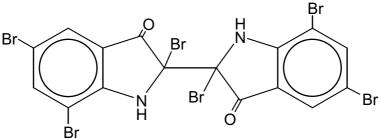
Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

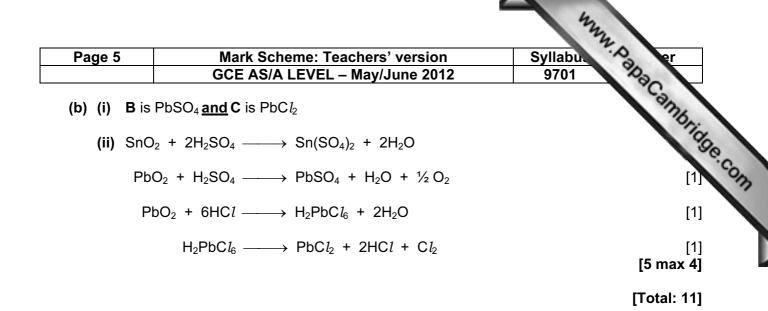

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

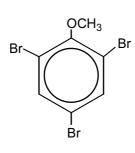

Page 2	Mark Scheme: Teachers' version Syllabu	er er
	GCE AS/A LEVEL – May/June 2012 9701	Day
(a) (i) the e	enthalpy change/released when 1 mole is formed	Samp.
of io	nic lattice from the gas phase ions	19
(ii) Mg ²⁻	+ $O^{2-} \longrightarrow MgO$	apacamprida [1]
· /	ments needed:	[4]
initial + f	mass/weight of water (in calorimeter) nal temperature/temperature change/temperature rise (of the water) Mg (used)/mass MgO	[1] [1] [1]
	me/moles/mass of oxygen used	[3]
(c) ∆H = 148	8 + 736 + 1450 + 496/2 - 141 + 798 – 3791	
	5 <u>2</u> kJ mol ^{−1}	[3] [3]
(d) Na ₂ O(s)	+ $H_2O(aq/l) \longrightarrow 2NaOH(aq)$	[1]
MgO(s)	+ $H_2O(aq/l) \longrightarrow Mg(OH)_2(s) \text{ or } Mg(OH)_2(aq)$ + $H_2O(aq/l) \longrightarrow Mg(OH)_2(s) \text{ or } Mg(OH)_2(aq)$ 14 [NaOH] AND 8-10.5 [Mg(OH)_2] respectively	[1] [1]
pri 12.0-		[3]
		[Total: 12]

 $\begin{pmatrix} \bullet \bullet \\ \bullet \\$

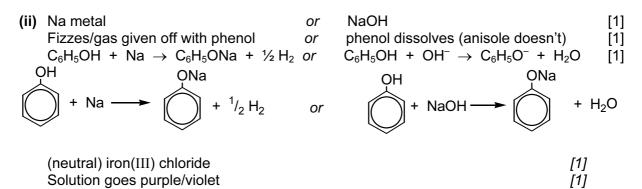
				[1]
	(ii)	–180 kJ mol ^{–1}		[1]
	(iii)		ndothermic) so high T and equilibrium pushed over to NO side. I to break N-N bond in $N_{\rm 2}$	[1]
	(iv)	-180 = 2 E(NO) - 994 E(NO) = +655 kJ mo	4 – 496 I ⁻¹	[1] [1] [5]
(b)	(i)	(from 1 and 2:) (from 1 and 3:)	as $p(NO)$ halves, rate decreases to $\frac{1}{4}$, so order = 2 as $p(H_2)$ halves, so does rate, so order = 1	[1] [1]
	(ii)	rate = $k p_{NO}^2 p_{H2}$ units (of k) are atm ⁻²	s ⁻¹	[1] [1]

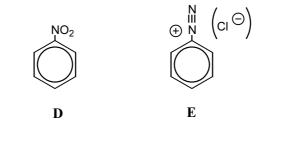
Pa	ge 3	Ma	k Scheme: Teachers' versi	on	Syllabu S	er
	-		AS/A LEVEL – May/June 2		9701 20	
	(iii)	cross out all speci NO + NO + H ₂ + $\frac{1}{4}$	tions: $P + H_2 + N_2O \rightarrow N_2O + O + H_2$ es common to both sides: $P + H_2 + \frac{N_2O}{2} \rightarrow \frac{N_2O}{2} + O + H_2$ $2NO + 2H_2 \rightarrow N_2 + 2H_2O$	$H_2O + N_2 + H_2$		ambride
	(iv)	either: step 2 since O formed from NC or: step 3 since N ₂ O formed from 1) e it involves H ₂			[1] [1] <i>[1]</i> [8]
(c)	(i)	NO				[1]
	(ii)		+ $NO_3^- \longrightarrow 3Fe^{3+} + NO_2^+ + HNO_2^- \longrightarrow Fe^{3+} + NO_2^+ + NO_2^+$			[1]
	(iii)	dative/coordinate	bonding			[1]
	(iv)	$[Fe(H_2O)_{6\text{-}n}(NO)_n]^2$	* (n = 1-6)			[1] [4]
					דו	otal:17]
(a)	(i)	$C_{16}H_{10}N_2O_2$				[1]
	(ii)	ketone, alkene, ar	nine, aryl (benzene/arene/ph	enyl)	(any	3) [2] [3]
(b)	(i)	reduction or redox				[1]
	(ii)	NaBH ₄ or LiA <i>l</i> H ₄	(NOT H ₂ + Ni)			[1] [2]
(c)	1.	2,4-DNPH [1]	red/yellow-orange/o	range ppt. [′	1] no reactio	on
	2.	Na metal [1]	no reaction		gas given off/fizzir	ng [1]
		PCl₅/SOCl₂ [1] PCl₃ + warm	no reaction		steamy fumes/fizzir misty/white fume	
	2 x	"no reaction"		must be link	xed to "correct reager	nt" [1] [5]




- 2 x Br on C=C [1]
- a Br on each ring [1]
- TWO non-adjacent Br on each ring [1]
 - [3]

[Total: 16]


4	(a)	(i)	volatilities decrease down the group	[1]
			due to greater van der Waals (VDW) forces (intermolecular is not sufficient)	[1]
			due to larger no of electrons	[1]
		(ii)	CCl ₄ does not react with water	[1]
			CCl ₄ unreactive due to no d -orbitals	[1]
			GeCl ₄ and PbCl ₄ hydrolyse/react	[1]
			$MCl_4 + 2H_2O \longrightarrow MO_2 + 4HCl (M = Ge or Pb)$	[1] [7]


5 (a) (i)

[1]

(b) (i)

[1] + [1]

[1]

[4]

(ii) step 2:	Sn + HC <i>l</i>	NOT LiA <i>t</i> H ₄ , NaBH ₄	[1]
	conc. + reflux	(warm is insufficient)	[1]

step 4 is	conditional of	^r structure E

 $3C_6H_5OH + FeCl_3 \rightarrow Fe(OC_6H_5)_3 + 3HCl$

step 4: warm + in H₂O

[1] [5 max 4]

					Mary .
	Pa	ge 6		Mark Scheme: Teachers' version	Syllabu. Syler
				GCE AS/A LEVEL – May/June 2012	9701 730
	(c)	(i)			ambri
		(ОН		Syllabu 9701 Broce J
			Fmı	F G H ust be an amide	J
			-		[4]
		• •		tion 1: H₂ + Ni <i>or</i> LiA <i>l</i> H₄ tion 2: heat + aqueous HC <i>l</i>	[1] [1] [6]
					[Total: 14]
6	(a)	(i)	Con	densation	[1]
		(ii)	ala-a	ala, gly-gly, ala-gly	[2] [3]
	(b)			rect sugar-phosphate backbones In two sugars and one phosphate attached)	[1]
			C – (G pair correct or A – T pair correct	[1]
			deox	xyribose label and all bases coming from sugars	[1]
				lication would be slower/difficult ause the DNA/strands could not be separated	[1] [4]
	(c)	(i)	Som	ne amino acids have more than one (triplet) code	[1]
		(ii)	loss/	/disruption of ionic bonding/hydrogen bonding	[1]
		• •		re would be a potential loss of all tertiary structure	
			or frame	neshift – deletion of a base changes protein structure	[1]
					[3]
					[Total: 10]

Pa	ge 7		rk Scheme: Teachers' version	Syllabu.	er
		GCI	E AS/A LEVEL – May/June 2012	9701	Soc.
(a)	[SIMB ₁
	+		Start point	-	abaCambride
		Glutamic acid	Glycine	Lysine	
		Lysine between -	ween + and start point and start point y close to, start point		[1] [1] [1] [3]
(b)	(i)		entration of a solute in each of two so stant representing the distribution of		olvents. [1]
	(ii)	illustration of som	e method of getting into our body via	the food chain	[1]
		They dissolve pre	ferentially in fats/oils		[1] [3]
(c)	(i)	$156 = C_{3}H_{6}^{35}Cl^{79}H_{6}^{35}Cl^{79}H_{6}^{35}Cl^{79}H_{6}^{35}Cl^{79}H_{6}^{35}Cl^{81}H_{6}^{35}$	Br ⁺ Br ⁺ Br ⁺ Br ⁺		[1] [1] [1] [1]
	(ii)	<i>m/e</i> = 15 Species	$= CH_3^+$		[1]

[Total: 10]

Page 8 Mark Scheme: Teachers' version Syllabut er GCE AS/A LEVEL – May/June 2012 9701 9701 (a) (a) (a) (a)
LDPE HDPE minimum of 2 chains suitable sketches (The close packing of unbranched side chains means) LDPE more space between the chains/polymers or HDPE less empty space between the chains

[2]

[1] **[2]**

Addition OR	condensation
requires C=C/double bond	does not need C=C/double bond
uses the same functional group	needs two different functional groups
same general (empirical) formula as monomer	different formula
no loss of small molecule/H ₂ O/HCI	small molecule /H ₂ O/HCl is formed

- (d) (i)(through its long chain of) delocalised electrons/mobile electrons[1](ii)planar[1]the π bonds/p-orbitals overlap (with each other)[1](iii) C_8H_6 [2]C_4H_3[5 max 4]
 - [Total: 10]