CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2012 series

9701 CHEMISTRY

9701/23

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE. GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

www.PapaCambridge.com

		2.
Page 2	Mark Scheme: Teachers' version	Syllabus
	GCE AS/A LEVEL – October/November 2012	9701

In this question, numerical answers should be given to three significant figures. 1

(a) (i)
$$C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$$

(ii)
$$M_r C_6 H_{12} O_6 = 180$$

 $180 g C_6 H_{12} O_6 \rightarrow 6 \text{ mol } CO_2$

1200 g
$$C_6H_{12}O_6 \to \underline{6 \times 200} \text{ mol } CO_2$$

180

 $= 40.0 \, \text{mol to } 3 \, \text{sf}$

allow ecf on wrong equation and/or wrong M_r

(1)

(iii) 6.82×10^9 people will produce $6.82 \times 10^9 \times 40.0$ mol CO₂

$$= 2.728 \times 10^{11} \text{ mol CO}_2$$

(1)

$$2.728 \times 10^{11} \text{ mol CO}_2 \equiv 2.728 \times 10^{11} \times 44 = 1.20032 \times 10^{13} \text{ g}$$

=
$$1.20 \times 10^7$$
 tonnes CO₂ to 3 sf

(1) [5]

allow ecf on answer from (ii)

(b) (i) $2C_8H_{18} + 25O_2 \rightarrow 16CO_2 + 18H_2O$ or

$$C_8H_{18} + 12\frac{1}{2}O_2 \rightarrow 8CO_2 + 9H_2O$$

(1)

(ii)
$$M_r C_8 H_{18} = (8 \times 12) + (18 \times 1) = 114$$

(1)

mass of 4.00 dm³ of octane =
$$4000 \times 0.70 = 2800$$
 g

(1)

$$n(C_8H_{18}) = \frac{2800}{114} = 24.56140351 \,\text{mol in } 4.00 \,\text{dm}^3$$

(1)

(iii) 2 mol C₈H₁₈ produce 16 × 44 g CO₂

24.6 mol C_8H_{18} produce $\underline{16 \times 44 \times 24.6}\,g$ CO2 $\underline{2}$

= 8659.2g CO₂

 $= 24.6 \, \text{mol to } 3 \, \text{sf}$

$$= 8660 g CO_2 to 3 sf$$

(1) [5]

Page 3	Mark Scheme: Teachers' version	Syllabus	6L
	GCE AS/A LEVEL – October/November 2012	9701	0

(c) 6.82×10^9 people produce 1.20×10^7 tonnes CO_2 per day

8660 g CO₂ produced when car travels 100 km

when travelling 1 km, car produces $\frac{8660}{100}$ = 8.66 × 10⁻¹ g

$$= 8.66 \times 10^{-5} \text{ tonnes}$$
 (1)

to produce 1.20 × 10⁷ tonnes CO₂ car must travel

$$\frac{1.20 \times 10^7}{8.66 \times 10^{-5}}$$

=
$$1.385681293 \times 10^{11} = 1.39 \times 10^{11} \text{ km to } 3 \text{ sf}$$
 (1) [2]

(d) possible pollutants and the damage they cause

СО	NO _X		SO ₂	H₂O	С	unburned	
	NO	NO2	002	1.120	•	C ₈ H ₁₈	
toxic	toxic	toxic	toxic				
	global	respiratory	respiratory	global	respiratory	respiratory	
	warming	problems	problems	warming	problems	problems	
	photochemical	acid rain	acid rain				
	smog		dola fairi				

compound (1) damage (1) [2]

[Total: 14]

Page 4	Mark Scheme: Teachers' version	Syllabus	· Ag Per
	GCE AS/A LEVEL – October/November 2012	9701	200

- 2 (a) (i) white fumes/steamy fumes
 - (ii) NaCl + H₂SO₄ \rightarrow NaHSO₄ + HCl or 2NaCl + H₂SO₄ \rightarrow Na₂SO₄ + 2HCl

(1) COM

(iii) an acid that is completely ionised in solution **or** an acid that is completely dissociated into H⁺ ions in solution

(1) [3]

(b) (i) purple/violet vapour (I_2) or black/brown solid (I_2) or irritating/acrid gas (SO_2) or stinking gas (H_2S) or yellow solid (S)

(1)

- (ii) conc. H₂SO₄ is an oxidising agent which oxidises HI
- or HI is a reducing agent or which reduces H₂SO₄
- (1) (1) [3]

(c) (i) white ppt formed – **not** creamy white or off white which dissolves in NH₃(aq)

(1) (1)

- (ii) NaCl(aq) + AgNO $_3(aq)$ \rightarrow AgCl(s) + NaNO $_3(aq)$ or $Cl^-(aq)$ + Ag $^+(aq)$ \rightarrow AgCl(s)
 - equation (1) all state symbols correct (1)
 - $AgCl(s) + 2NH_3(aq) \rightarrow [Ag(NH_3)_2]^+ Cl^-(aq)$ or $AgCl(s) + 2NH_3(aq) \rightarrow [Ag(NH_3)_2] Cl(aq)$
 - equation (1)
 - all state symbols correct (1)
- (iii) precipitate is yellow (1) precipitate does not dissolve (1) [8]

[Total: 14]

Page 5	Mark Scheme: Teachers' version	Syllabus	
	GCE AS/A LEVEL – October/November 2012	9701	

3 (a) manufacture of ammonia/Haber process or hydrogenation of fats/oils or making margarine or hydrocracking

(1) Ge.C

(b) (i) increasing the pressure

(ii) decreasing the temperature

(d) (i)
$$\underline{K_c} = [CO_2][H_2]$$
 [CO][H₂0] (1)

(ii)
$$CO(g) + H_2O(g) \rightleftharpoons CO_2(g) + H_2(g)$$
 initial moles
$$0.40 \quad 0.40 \quad 0.20 \quad 0.20$$
 equil moles
$$(0.40 - y) \quad (0.40 - y) \quad (0.20 + y) \quad (0.20 + y)$$
 equil concn./mol
$$(0.40 - y) \quad (0.40 - y) \quad (0.20 + y) \quad (0.20 + y)$$
 dm⁻³
$$1 \quad 1 \quad 1 \quad 1 \quad 1$$

$$K_c = \frac{(0.20 + y)^2}{(0.40 - y)^2} = 6.40 \times 10^{-1}$$
 (1)

$$(0.20 + y) = \sqrt{6.40 \times 10^{-1}} = 0.8$$

(0.40 - y)

$$(0.20 + y) = 0.8 \times (0.40 - y)$$

$$0.20 + y = 0.32 - 0.8y$$

$$1.8 y = 0.12$$

gives
$$y = 0.067$$
 (1)

at equilibrium

$$n(CO) = n(H_2O) = (0.40 - 0.067) = 0.33 \text{ mol }$$
and $n(CO_2) = n(H_2) = (0.20 + 0.067) = 0.27 \text{ mol}$ (1)

[Total: 12]

	Page	e 6	Mark Scheme:	Teachers' version October/Novembe		Syllabus 9701	A. Palla er
4	(a) (i)					Camphidge
		reaction	organic compound	reagent		ural formulae o anic product	f Se.Con
		А	CH ₃ CH(OH)CH ₃	NaBH₄	n	o reaction	

(a) (i)

reaction	organic compound	reagent	structural formulae of organic product
А	CH ₃ CH(OH)CH ₃	NaBH ₄	no reaction
В	CH₃COCH₃	Tollens' reagent warm	no reaction
С	CH ₃ CO ₂ CH(CH ₃) ₂	KOH(aq) warm	CH ₃ CO ₂ K or CH ₃ CO ₂ ⁻ + (CH ₃) ₂ CHOH
D	(CH₃)₃COH	Cr ₂ O ₇ ^{2–} /H ⁺ heat under reflux	no reaction
E	CH₃COCH₃	NaBH₄	CH₃CH(OH)CH₃
F	(CH₃)₃COH	PC <i>l</i> ₅	(CH ₃) ₃ CC <i>l</i>
G	CH₃CH=CHCH₂OH	MnO₄⁻/H⁺ heat under reflux	CH ₃ CO ₂ H + HO ₂ CCO ₂ H

each correct answer gets 1

(9 × 1)

(ii)

reaction	colour at the beginning of the reaction	colour at the end of the reaction
G	purple	colourless
Ü	ραιριο	not clear

(1 + 1 + 1) [12]

[Total: 12]

Page 7	Mark Scheme: Teachers' version	Syllabus	er
	GCE AS/A LEVEL – October/November 2012	9701	

5 (a) (i)

H J K

CH₂=CHCH₂CH₂OH CH₃CH₂COCH₃ CH₃CH₂CH₂CHO

CH₃CH=CHCH₂OH

CH₂=CHCH(OH)CH₃

each correct answer gets 1 (5 x 1)

(ii)

(1)

(iii)

correct structure drawn fully displayed (1)

chiral centre clearly shown by* (1)

[8]

[Total: 8]