MARK SCHEME for the October/November 2012 series

9701 CHEMISTRY

9701/41

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

1 (a) SiCl_{4} : white solid or white/steamy fumes

$$
\mathrm{SiCl}_{4}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{SiO}_{2}+4 \mathrm{HCl}
$$

PC_{5} : fizzes or white/steamy fumes
$\mathrm{PCl}_{5}+4 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{3} \mathrm{PO}_{4}+5 \mathrm{HCl}$
(b) (i) $\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{Fe}^{2+} \longrightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{Fe}^{3+}$
(ii) $5: 1$
(iii) $\mathrm{n}\left(\mathrm{MnO}_{4}^{-}\right)=0.02 \times 15 / 1000=3 \times 10^{-4}(\mathrm{~mol})$
(iv) $\mathrm{n}\left(\mathrm{Fe}^{2+}\right)=5 \times 3 \times 10^{-4}=1.5 \times 10^{-3}(\mathrm{~mol})$ ecf from (i) or (ii)
(v) $\left[\mathrm{Fe}^{2+}\right]=1.5 \times 10^{-3} \times 1000 / 2.5=\mathbf{0 . 6}\left(\mathrm{mol} \mathrm{dm}^{-3}\right)$ ecf from (iv)
(vi) In the original solution, there was 0.15 mol of Fe^{3+} in $100 \mathrm{~cm}^{3}$.

In the partially-used solution, there is 0.06 mol of Fe^{2+} in $100 \mathrm{~cm}^{3}$.
So remaining $\mathrm{Fe}^{3+}=0.15-0.06=0.09 \mathrm{~mol}$. ecf from (v)
This can react with 0.045 mol of Cu , which $=0.045 \times 63.5=\mathbf{2 . 8 6} \mathbf{g}$ of copper. ecf
(c) bonds broken are $\mathrm{Si}-\mathrm{Si}$ and $\mathrm{Cl}-\mathrm{Cl}=222+244=466 \mathrm{~kJ} \mathrm{~mol}^{-1}$
bonds formed are $2 \times \mathrm{Si}-\mathrm{Cl}=2 \times 359=718 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\Delta \mathrm{H}=\underline{-252} \mathrm{~kJ} \mathrm{~mol}^{-1}$
[2]
(d) (i) $\mathrm{Ca}_{2} \mathrm{Si}+6 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathbf{2 C a}(\mathrm{OH})_{2}+\mathrm{SiO}_{2}+4 \mathrm{H}_{2}$
(ii) silcon has been oxidised $\underline{\text { AND }}$ hydrogen has been reduced

Page 3		Mark Scheme
2	GCE A LEVEL - October/November 2012	Syllabus
2	(i)$\mathrm{A}=\mathrm{CuSO}_{4}$ $\mathrm{~B}=$ silver	9701

(ii) salt bridge voltmeter
(b) (i) $0.80-0.34=(+) 0.46 \mathrm{~V}$
(ii) If $E_{\text {cell }}=0.17$, this is 0.29 V less than the standard E°, so $E_{\text {Ag electrode }}$ must $=0.80-0.29=\mathbf{0 . 5 1} \mathrm{V}$
(iii) $0.51=0.80+0.06 \log \left[\mathrm{Ag}^{+}\right]$, so $\left[\mathrm{Ag}^{+}\right]=10^{(-0.29 / 0.06)}=\underline{1.47 \times 10^{-5}} \mathrm{~mol} \mathrm{dm}^{-3}$ ecf from (ii) [1]

[3]

(c) (i) $K_{\text {sp }}=\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{SO}_{4}{ }^{2-}\right]$
units $=\mathrm{mol}^{3} \mathrm{dm}^{-9}$ ecf on $K_{\text {sp }}$
(ii) $\left[\mathrm{SO}_{4}{ }^{2-}\right]=\left[\mathrm{Ag}^{+}\right] / 2 K_{\mathrm{sp}}=\left(1.6 \times 10^{-2}\right)^{2} \times 0.8 \times 10^{-2}=\underline{\mathbf{2} .05 \times 10^{-6}}\left(\mathrm{~mol}^{3} \mathrm{dm}^{-9}\right)$
(d) $\begin{array}{cc}\mathrm{AgCl} & \text { white } \\ \mathrm{AgBr} & \text { cream } \\ \mathrm{AgI} & \text { yellow }\end{array}$

Solubility decreases down the group
(e) solubility decreases down the group
as $\mathrm{M}^{2+} /$ ionic radius increases
both lattice energy and hydration(solvation) energy to decrease
enthalpy change of solution becomes more endothermic

Page 4	Mark Scheme	Syllabus.
	GCE A LEVEL - October/November 2012	9701

3 (a) (i) heterogeneous: different states AND homogeneous: same state
(ii) the correct allocation of the terms heterogeneous and homogeneous to common catalysts
example of heterogeneous, e.g. Fe (in the Haber process) linked to correct system equation, e.g. $\mathrm{N}_{2}+3 \mathrm{H}_{2} \longrightarrow 2 \mathrm{NH}_{3}$

```
how catalyst works, adsorption (onto the surface) ecf for non-iron catalyst
```

example of homogeneous, e.g. Fe^{3+} or Fe^{2+} (in $\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}+\mathrm{I}^{-}$) linked to correct system
equation, e.g. $\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}+2 \mathrm{I}^{-} \longrightarrow 2 \mathrm{SO}_{4}{ }^{2-}+\mathrm{I}_{2}$
how catalyst works, e.g. $\mathrm{Fe}^{3+}+\mathrm{I}^{-} \longrightarrow \mathrm{Fe}^{2+}+1 / 2 \mathrm{I}_{2}$
ecf for non-iron catalyst
(b)

$$
\begin{align*}
& \text { both } E_{a} \text { shown, with } E_{a}(1)>E_{a}(2) \tag{1}\\
& \text { both } \Delta H \text { shown, with } \Delta H(1)>\Delta H(2)
\end{align*}
$$

(b) nucleophilic substitution
(c) heat under reflux + aqueous HCl
(d) alkene
(e) amide or ester
(f)

C (cis/trans)

alternative structure for capsaicin

ecf $5 \times$ [1]
(b)

| reagent | observation | effervescence
 sodium
 metal | subbles/fizzing |
| :--- | :---: | :---: | :---: | :---: |

(c) (i)

J

K
(ii) step 1: $\mathrm{NaNO}_{2}+\mathrm{HCl}$ or HNO_{2}
at $\mathrm{T}<10^{\circ} \mathrm{C}$
step 2: (add \mathbf{K} to a solution of \mathbf{G}) in aqueous NaOH
(d)

ecf from $\mathrm{CH}_{3} \mathrm{COOH}$

Page 8 Mark Scheme	Syllabus	9701

Section B

6 (a)

bonding	structure involved
disulfide bonds between parts of the chain	tertiary
hydrogen bonds in a β-pleated sheet	secondary
ionic bonds between parts of the chain	tertiary
peptide links between amino acids	primary

zero/one correct only \rightarrow [0], two correct only \rightarrow [1], three correct only \rightarrow [2] all four correct [3]
(b) labelled diagrams such as:

Competitive any two from:

- complementary shape to substrate / able to bind to active site of enzyme
- so preventing the substrate from binding / able to compete with substrate
- can be overcome by increasing [substrate]

Non-competitive: any two from:

- binds elsewhere in the enzyme than active site / at an allosteric site
- this changes the shape of the active site
- cannot be removed by increasing [substrate]

Page 9	Mark Scheme	Syllabus
	GCE A LEVEL - October/November 2012	9701

(c)

A and C and other strand correct
H -bonds labelled
adenine AND cytosine

7 (a) (i) Electrophoresis
(ii) Using a restriction enzyme.
(iii) The phosphate group.
(b) (i) X labelled correctly on diagram.
(ii) Suspect 2 AND matches crime scene 1 or matches at least one crime scene.
(c) \mathbf{P} is $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$

any four of:

- 3 different (proton) environments
- (M and $M+1$ data shows no of carbons present is) $(100 \times 0.22) /(1.1 \times 5.1)=4$ carbons
- the NMR spectrum shows 8 hydrogens leaving 32 mass unit or 2 oxygen or $M_{\mathrm{r}}=88$ and (molecular formula is) $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$
- 4 peaks/quartet (at 4.1) shows an adjacent $3 \mathrm{H} / \mathrm{CH}_{3}$
- 3 peaks/triplet (at 1.3) shows an adjacent $2 \mathrm{H} / \mathrm{CH}_{2}$
- (peak at) 2.0/singlet shows $\mathrm{CH}_{3} \mathrm{CO}$ (group)
- (peak at) $4.1 /$ quartet and $1.3 /$ triplet shows presence of ethyl/ $/ \mathrm{CH}_{3} \mathrm{CH}_{2}$ (group)

8 (a) (i) It could denature the enzyme or alter the 3D structure/tertiary structure/shape of active site.
(ii) condensation
(b)

(c) (i) (Acid present would) hydrolyse the ester (linkage)
(ii) (Hot water would) soften (the container)

Page 11	Mark Scheme	Syllabus

GCE A LEVEL - October/November 2012 9701
(d) (i)

ester linkage shown
rest of repeat unit correct (ONE)
(ii) van der Waals' from $\mathrm{CH}_{3} /$ methyl group
permanent dipole-dipole from ester group
(iii) Accept any sensible physical property suggestion e.g. different melting point or different density or different solubility.

