# **CAMBRIDGE INTERNATIONAL EXAMINATIONS**

**GCE Advanced Level** 

## MARK SCHEME for the October/November 2012 series

# 9701 CHEMISTRY

9701/41

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

www.PapaCambridge.com

|        |                                     | 2.       |  |
|--------|-------------------------------------|----------|--|
| Page 2 | Mark Scheme                         | Syllabus |  |
|        | GCE A LEVEL – October/November 2012 | 9701     |  |

1 (a) SiC14: white solid or white/steamy fumes

$$SiCl_4 + 2H_2O \longrightarrow SiO_2 + 4HCl$$

$$PCl_5 + 4H_2O \longrightarrow H_3PO_4 + 5HCl$$

(b) (i) 
$$MnO_4^- + 8H^+ + 5Fe^{2+} \longrightarrow Mn^{2+} + 4H_2O + 5Fe^{3+}$$

(ii) 5:1

(iii) 
$$n(MnO_4^-) = 0.02 \times 15/1000 = 3 \times 10^{-4} \text{ (mol)}$$

(iv) 
$$n(Fe^{2+}) = 5 \times 3 \times 10^{-4} = 1.5 \times 10^{-3}$$
 (mol) ecf from (i) or (ii)

(v) 
$$[Fe^{2+}] = 1.5 \times 10^{-3} \times 1000/2.5 = 0.6 \text{ (mol dm}^{-3}) \text{ ecf from (iv)}$$

[1]

(vi) In the original solution, there was  $0.15\,\mathrm{mol}$  of  $\mathrm{Fe^{3^+}}$  in  $100\,\mathrm{cm^3}$ . In the partially-used solution, there is  $0.06\,\mathrm{mol}$  of  $\mathrm{Fe^{2^+}}$  in  $100\,\mathrm{cm^3}$ .

So remaining 
$$Fe^{3+} = 0.15 - 0.06 = 0.09 \text{ mol. ecf from } (v)$$

[1]

This can react with 0.045 mol of Cu, which =  $0.045 \times 63.5 = 2.86 \,\mathrm{g}$  of copper. ecf

[6]

[1]

(c) bonds broken are Si-Si and Cl-Cl = 222 + 244 = 466 kJ mol<sup>-1</sup> bonds formed are 2 × Si-Cl = 2 × 359 = 718 kJ mol<sup>-1</sup>  $\Delta H = -252$  kJ mol<sup>-1</sup>

(d) (i) 
$$Ca_2Si + 6H_2O \longrightarrow 2Ca(OH)_2 + SiO_2 + 4H_2$$

[1]

(ii) silcon has been oxidised AND hydrogen has been reduced

[1] [2]

[Total: 14]

| Page 3 | Mark Scheme                         | Syllabus | er  |
|--------|-------------------------------------|----------|-----|
|        | GCE A LEVEL – October/November 2012 | 9701     | 200 |

- 2 (a) (i)  $A = CuSO_4$ **B** = silver
  - (ii) salt bridge voltmeter

[4]

**(b) (i)** 
$$0.80 - 0.34 =$$
 **(+) 0.46 V**

(ii) If  $E_{cell} = 0.17$ , this is 0.29 V less than the standard  $E^{\circ}$ , so  $E_{\text{Ag electrode}}$  must = 0.80 - 0.29 = **0.51 V** 

[1]

(iii)  $0.51 = 0.80 + 0.06\log [Ag^+]$ , so  $[Ag^+] = 10^{(-0.29/0.06)} = 1.47 \times 10^{-5} \text{ mol dm}^{-3} \text{ ecf from (ii)}$  [1]

[3]

(c) (i)  $K_{sp} = [Ag^{\dagger}]^2 [SO_4^{2-}]$ units = mol<sup>3</sup> dm<sup>-9</sup> ecf on  $K_{sp}$ 

[1] [1]

(ii)  $[SO_4^{2-}] = [Ag^+]/2$   $K_{sp} = (1.6 \times 10^{-2})^2 \times 0.8 \times 10^{-2} = 2.05 \times 10^{-6} (\text{mol}^3 \text{dm}^{-9})$ [1]

[3]

(**d**) AgC*l* white [1]

AgBr cream AgI yellow [1] [1]

Solubility decreases down the group

[4]

[1]

(e) solubility decreases down the group

[1] [1]

as M<sup>2+</sup>/ionic radius increases both lattice energy and hydration(solvation) energy to decrease

[1] [1]

enthalpy change of solution becomes more endothermic

[4]

[Total: 18]

| Page 4 | Mark Scheme                         | Syllabus | er  |
|--------|-------------------------------------|----------|-----|
|        | GCE A LEVEL – October/November 2012 | 9701     | 123 |

- 3 heterogeneous: different states **AND** homogeneous: same state
  - (ii) the correct allocation of the terms heterogeneous and homogeneous to common catalysts

example of heterogeneous, e.g. Fe (in the Haber process) linked to correct system [1] equation, e.g. 
$$N_2 + 3H_2 \longrightarrow 2NH_3$$
 [1]

example of homogeneous, e.g.  $Fe^{3+}$  or  $Fe^{2+}$  (in  $S_2O_8^{2-} + I^-$ ) linked to correct system [1]

equation, e.g. 
$$S_2O_8^{2-} + 2I^- \longrightarrow 2SO_4^{2-} + I_2$$
 [1]

how catalyst works, e.g. 
$$Fe^{3+} + I^{-} \longrightarrow Fe^{2+} + \frac{1}{2}I_{2}$$
 [1] ecf for non-iron catalyst

[8]



both 
$$E_a$$
 shown, with  $E_a(1) > E_a(2)$  [1]  
both  $\Delta H$  shown, with  $\Delta H(1) > \Delta H(2)$  [1]

[2]

[Total: 10]

| Page 5 | Mark Scheme                         | Syllabus |  |
|--------|-------------------------------------|----------|--|
|        | GCE A LEVEL – October/November 2012 | 9701     |  |

- 4 (a)  $K_2Cr_2O_7 + H^+ + heat under reflux$ 
  - (b) nucleophilic substitution
  - (c) heat under reflux + aqueous HCl [1]
  - (d) alkene [1]
  - (e) amide or ester [1]

[5]

$$H_3C$$
 $CH_3$ 
 $CH_3$ 

C (cis/trans)

$$HO_2C$$
 $CO_2H$ 
 $H_3C$ 
 $CO_2H$ 
 $E$ 

$$^{NC}$$
 CN (-1 for CN- bond attachment)

alternative structure for capsaicin

**ecf** 5 × [1]

[5]

[Total: 10]

|        |                                     | 2.       |
|--------|-------------------------------------|----------|
| Page 6 | Mark Scheme                         | Syllabus |
|        | GCE A LEVEL – October/November 2012 | 9701     |

5 (a) phenol ketone

(b)

| reagent                       | observation                       | structure of product  | type of reaction              |
|-------------------------------|-----------------------------------|-----------------------|-------------------------------|
| sodium<br>metal               | effervescence<br>/bubbles/fizzing |                       | redox                         |
| aqueous<br>bromine            | decolourises<br>or white ppt.     | Br<br>HO<br>Br        | electrophilic<br>substitution |
| aqueous<br>alkaline<br>iodine | yellow ppt.                       | HO CO <sub>2</sub> Na | oxidation                     |

[2]

[8]

[1] + [1]

|        | M   0                               | 0 11 1   | .0   |
|--------|-------------------------------------|----------|------|
| Page 7 | Mark Scheme                         | Syllabus | S er |
|        | GCE A LEVEL – October/November 2012 | 9701     | 120  |

(ii) step 1: NaNO<sub>2</sub> + HC*l or* HNO<sub>2</sub>

at T < 10°C

step 2: (add  ${\bf K}$  to a solution of  ${\bf G}$ ) in aqueous NaOH

[1] COM

[5]

(d) 
$$SOC l_2/PC l_5$$
  
 $/PC l_3$  + heat add to **G** (in NaOH(aq))  
 $(CH_3CH_2CO_2H) \xrightarrow{} CH_3CH_2COC l \xrightarrow{} L$   
[1] [1] [1]

ecf from CH<sub>3</sub>COOH

[3]

[Total: 18]

|   | Page | 8 Mark Scheme GCE A LEVEL – October/Novembe | r 2012    | Syllabus<br>9701 | · Adda er |
|---|------|---------------------------------------------|-----------|------------------|-----------|
| 6 | (a)  | Section B                                   |           |                  | andride   |
|   |      | bonding                                     | structure | involved         | Se.Con    |
|   |      | disulfide bonds between parts of the chain  | tertiary  |                  | 13        |

#### **Section B**

#### 6 (a)

| bonding                                    | structure involved |
|--------------------------------------------|--------------------|
| disulfide bonds between parts of the chain | tertiary           |
| hydrogen bonds in a β-pleated sheet        | secondary          |
| ionic bonds between parts of the chain     | tertiary           |
| peptide links between amino acids          | primary            |

zero/one correct only  $\rightarrow$  [0], two correct only  $\rightarrow$  [1], three correct only  $\rightarrow$  [2] all four correct [3]

[3]

## (b) labelled diagrams such as:



## Competitive any two from:

- complementary shape to substrate / able to bind to active site of enzyme
- so preventing the substrate from binding / able to compete with substrate
- can be overcome by increasing [substrate]

2 × [1]



## Non-competitive: any two from:

- binds elsewhere in the enzyme than active site / at an allosteric site
- this changes the shape of the active site
- cannot be removed by increasing [substrate]

2 × [1]

[4]

| Page 9 | Mark Scheme                         | Syllabus            |
|--------|-------------------------------------|---------------------|
|        | GCE A LEVEL – October/November 2012 | 9701 Page 1         |
| (c)    |                                     | Cally               |
|        | phosphate sugar sugar phosphate     | phosphate phosphate |
|        | / \                                 | buseling.           |
|        |                                     | OH                  |
|        | T                                   |                     |



A and C and other strand correct H-bonds labelled

[1] [1] [1]

adenine AND cytosine

[3]

[Total: 10]

7 (a) (i) Electrophoresis [1]

(ii) Using a restriction enzyme.

[1] [1]

(iii) The phosphate group.

[3]

(b) (i) X labelled correctly on diagram.

[1]

[1]

- (ii) Suspect 2 AND matches crime scene 1 or matches at least one crime scene.
- [2]

| Page 10 | Mark Scheme                         | Syllabus | er  |
|---------|-------------------------------------|----------|-----|
|         | GCE A LEVEL – October/November 2012 | 9701     | 100 |

## (c) P is CH<sub>3</sub>CO<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>

#### any four of:

- 3 different (proton) environments
- (M and M+1 data shows no of carbons present is)  $(100 \times 0.22)/(1.1 \times 5.1) = 4$  carbons
- the NMR spectrum shows 8 hydrogens leaving 32 mass unit or 2 oxygen or  $M_r$  = 88 and (molecular formula is) C<sub>4</sub>H<sub>8</sub>O<sub>2</sub>
- 4 peaks/quartet (at 4.1) shows an adjacent 3H/CH<sub>3</sub>
- 3 peaks/triplet (at 1.3) shows an adjacent 2H/CH<sub>2</sub>
- (peak at) 2.0/singlet shows CH<sub>3</sub>CO (group)
- (peak at) 4.1/quartet and 1.3/triplet shows presence of ethyl/CH<sub>3</sub>CH<sub>2</sub> (group)

4 × [1]

[5]

[Total: 10]

- 8 (a) (i) It could denature the enzyme or alter the 3D structure/tertiary structure/shape of active site.
  - [1]
  - (ii) condensation

[2]

[1]

(b)

$$CO_2H$$
  $CO_2H$   $CO_2$ 

or correct diagram of the S isomer

[1]

[1]

(c) (i) (Acid present would) hydrolyse the ester (linkage)

[1] [1]

(ii) (Hot water would) **soften** (the container)

[2]

| Page 11 | Mark Scheme                         | Syllabus |  |
|---------|-------------------------------------|----------|--|
|         | GCE A LEVEL – October/November 2012 | 9701     |  |

(d) (i)



ester linkage shown rest of repeat unit correct (ONE)

[1] [1]

(ii) van der Waals' from CH<sub>3</sub>/methyl group **permanent** dipole-dipole from ester group

- [1] [1]
- (iii) Accept any sensible physical property suggestion e.g. different melting point *or* different density *or* different solubility. [1]

[5]

[Total: 10]