CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Level

www.papacambridge.com MARK SCHEME for the October/November 2012 series

9701 CHEMISTRY

9701/42

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus or
	GCE A LEVEL – October/November 2012	9701 23
a) SiC <i>t</i> 4: w	hite solid or white/steamy fumes	Sinb.
SiC <i>1</i> ₄ + 2	$2H_2O \longrightarrow SiO_2 + 4HCl$	10
PC <i>l</i> ₅: fiz	zes <i>or</i> white/steamy fumes	[1]
PC <i>l</i> ₅ + 4	$H_2O \longrightarrow H_3PO_4 + 5HCl$	[1]
		[4]
(b) (i) Mn($D_4^- + 8H^+ + 5Fe^{2+} \longrightarrow Mn^{2+} + 4H_2O + 5Fe^{3+}$	[1]
(ii) 5: ´	1	
(iii) n(M	nO ₄ ⁻) = 0.02 × 15/1000 = 3 × 10 ⁻⁴ (mol)	[1]
(iv) n(Fe	e^{2^+}) = 5 × 3 × 10 ⁻⁴ = 1.5 × 10 ⁻³ (mol) ecf from (i) or (ii)	[1]
(v) [Fe ²	²⁺] = 1.5 × 10 ⁻³ × 1000/2.5 = 0.6 (mol dm ⁻³) ecf from (iv) [1]
(vi) In th In th	ne original solution, there was 0.15 mol of Fe ³⁺ in 100 cr ne partially-used solution, there is 0.06 mol of Fe ²⁺ in 10	m ³ .)0 cm ³ .
So	remaining Fe ³⁺ = 0.15 – 0.06 = 0.09 mol. ecf from (v)	[1]
This	s can react with 0.045 mol of Cu, which = 0.045×63.5	= 2.86 g of copper. ecf [1]
		[6]
(c) bonds b	roken are Si-Si and C <i>l</i> -C <i>l</i> = 222 + 244 = 466 kJ mol ⁻¹	
bonds fo	prmed are 2 × Si-C l = 2 × 359 = 718 kJ mol ⁻¹	101
∆H = <u>−</u> 2	<u>52</u> kj mol	[2]
		[2]
(d) (i) Ca ₂	Si + $6H_2O \longrightarrow 2Ca(OH)_2 + SiO_2 + 4H_2$	[1]
(ii) silco	on has been oxidised <u>AND</u> hydrogen has been reduced	d [1]
		[2]
		[Total: 1/1

Page 3				Mark Scher	ne		Syllabus	· ~ ~	<u></u>
			GCE A L	EVEL – October	/November 2	2012	9701	1020	
(a)	(i) (ii)	A = 0 B = 1 salt l voltn	CuSO₄ silver oridge neter					- All	101109 [1] [4]
(b)	(i)	0.80	– 0.34 = (+) 0	.46 V					[1]
	(ii)	lf E _{ce} so E	_{ell} = 0.17, this is _{Ag electrode} must	s 0.29 V less than = 0.80 – 0.29 = 0	the standard .51 V	∃ <i>E</i> °,			[1]
	(iii)	0.51	= 0.80 + 0.06	log [Ag⁺], so [Ag⁺]	= 10 ^(-0.29/0.06)	= <u>1.47 x ′</u>	<u>10^{−5}</u> moldm⁻	³ ecf from (ii)	[1]
									[3]
(c)	(i)	K _{sp} = units	[:] [Ag⁺]²[SO₄²⁻] = mol³ dm ^{−9} e	ecf on $K_{\rm sp}$					[1] [1]
	(ii)	[SO₄	^{2–}] = [Ag ⁺]/2 <i>K</i>	$X_{\rm sp} = (1.6 \times 10^{-2})^2$	× 0.8 × 10 ⁻² :	= <u>2.05 × 1</u> (<u>0^{−6} (</u> mol ³ dm ⁻	-9)	[1]
									[3]
(d)	Ag(AgE	C <i>l</i> Br	white cream						[1] [1]
	AgI		/ellow						[1]
	Sol	ubility	decreases do	wn the group					[1]
									[4]
(e)	solu as l boti enti	ubility M ²⁺ / io h lattio halpy	decreases do nic radius inc ce energy <u>and</u> change of solu	wn the group reases hydration(solvati ution becomes mo	on) energy to ore endother	o decrease mic	•		[1] [1] [1] [1]
									[4]
								[Total	· 181

[Total: 10]

[2]

ecf 5 × [1]

[5]

[Total: 10]

Page 6		Mark Scheme	Syllabus 7.0 er
		GCE A LEVEL – October/November 2012	9701 23
5	(a) phenol ketone		Cambridge.co.
	(b)		173

42

5 (a) phenol ketone

reagent	observation	structure of product	type of reaction
sodium metal	effervescence /bubbles/fizzing		redox
aqueous bromine	decolourises or white ppt.	Br HO Br	electrophilic substitution
aqueous alkaline iodine	yellow ppt.	HO CO ₂ Na	oxidation

[2]

[8]

(c) (i)

[1] + [1]

Page	Mark Scheme GCE A LEVEL – October/November 2012		Syllabus 9701	Papaer
(a)	Section B			Cambrido
	bonding	structure involved		Se.con
	disulfide bonds between parts of the chain	tertiary		12

Section B

6 (a)

bonding	structure involved
disulfide bonds between parts of the chain	tertiary
hydrogen bonds in a β -pleated sheet	secondary
ionic bonds between parts of the chain	tertiary
peptide links between amino acids	primary

zero/one correct only \rightarrow [0], two correct only \rightarrow [1], three correct only \rightarrow [2] all four correct [3]

[3]

(b) labelled diagrams such as:

Competitive any two from:

- complementary shape to substrate / able to bind to active site of enzyme •
- so preventing the substrate from binding / able to compete with substrate
- can be overcome by increasing [substrate]

Non-competitive: any two from:

- binds elsewhere in the enzyme than active site / at an allosteric site
- this changes the shape of the active site cannot be removed by increasing [substrate]

2 × [1]

2 × [1]

[4]

(b)

or correct diagram of the S isomer

[1]

[1]

- (c) (i) (Acid present would) hydrolyse the ester (linkage) [1]
 - (ii) (Hot water would) **soften** (the container)

[2]

[1]

[Total: 10]