

Cambridge International AS & A Level

	CANDIDATE NAME															
	CENTRE NUMBER			CANDIE NUMBE												
* 5 4	CHEMISTRY	MISTRY 9701/31														
2 3	Paper 3 Advanc	nced Practical Skills 1 May/June 2020														
3 6		2 hours														
7 0 5	You must answer on the question paper.															
*	You will need:	The materials ar	nd apparatu	is listed in the confidential instruction	ns											
	 Write your a Write your a Do not use Do not writ You may us You should figures. 	questions. c or dark blue per name, centre nur answer to each o an erasable per e on any bar cod se a calculator. show all your wo s of the practical	mber and ca question in t n or correcti les. prking, use	use an HB pencil for any diagrams andidate number in the boxes at the the space provided. on fluid. appropriate units and use an approp d laboratory, where appropriate,	e top of the page.											
	• The number			n or part question is shown	Laboratory											
		ic Table is printed		stion paper. provided in the question paper.	For Examiner's Use											

For Examiner's Use								
1								
2								
3								
Total								

This document has **12** pages. Blank pages are indicated.

Quantitative Analysis

Read through the whole method before starting any practical work. Where appropriate, prepare a table for your results in the space provided.

Show your working and appropriate significant figures in the final answer to **each** step of your calculations.

1 In this experiment you will carry out a titration to determine the relative formula mass of a hydrated salt, **FA 1**.

FA 1 is a hydrated salt.FA 2 is dilute sulfuric acid.FA 3 is 0.0200 mol dm⁻³ potassium manganate(VII).

(a) Method

Preparing a solution of FA 1

- Weigh the stoppered container of **FA 1**. Record the mass in the space below.
- Tip all the **FA 1** into the beaker.
- Reweigh the container with its stopper. Record the mass.
- Calculate and record the mass of FA 1 used.
- Add approximately 100 cm³ of **FA 2** to the **FA 1** in the beaker.
- Stir the mixture until all the **FA 1** has dissolved.
- Transfer this solution into the 250 cm³ volumetric flask.
- Rinse the beaker and glass rod with distilled water and transfer the washings to the volumetric flask.
- Make up the solution in the volumetric flask to the mark using distilled water.
- Shake the flask thoroughly.
- This solution of the hydrated salt is **FA 4**. Label the flask **FA 4**.

Titration

- Fill the burette with **FA 3**.
- Pipette 25.0 cm³ of **FA 4** into a conical flask.
- Use the 25.0 cm³ measuring cylinder to add 10 cm³ of **FA 2** to the **FA 4** in the conical flask.
- Perform a rough titration and record your burette readings in the space below.

The rough titre is cm³.

- Carry out as many accurate titrations as you think necessary to obtain consistent results.
- Make sure any recorded results show the precision of your practical work.
- Record in a suitable form below all of your burette readings and the volume of **FA 3** added in each accurate titration.

Keep FA 3 and FA 4 for use in Question 3.

Ι	
II	
III	
IV	
V	
VI	
VII	
VIII	

[8]

(b) From your accurate titration results, obtain a suitable value for the volume of FA 3 to be used in your calculations. Show clearly how you obtained this value.

25.0 cm³ of **FA 4** required cm³ of **FA 3**. [1]

(c) Calculations

(i) Calculate the number of moles of potassium manganate(VII) present in the volume of FA 3 calculated in (b).

moles of $KMnO_4$ = mol [1]

(ii) 1 mol of $KMnO_4$ reacts with 5 mol of the hydrated salt, **FA 1**.

Calculate the concentration of the hydrated salt, in mol dm⁻³, in **FA 4**.

concentration of **FA 4** = mol dm⁻³ [1]

(iii) Use your answer to (c)(ii), and your data on page 2, to calculate an experimentally determined value for the relative formula mass of the hydrated salt, FA 1. Show your working.

[Total: 12]

2 In this experiment you will determine the enthalpy change of solution for anhydrous sodium carbonate.

FA 5 is anhydrous sodium carbonate, Na_2CO_3 . (You are given approximately 11 g.)

(a) Method

Experiment 1

- Weigh a cup. Record the mass.
- Transfer 4.0–4.2g of **FA 5** from the container into the cup.
- Reweigh and record the mass of the cup with FA 5.
- Calculate and record the mass of **FA 5** used.
- Support the cup in the 250 cm³ beaker.
- Pour 30 cm³ of distilled water into the 50 cm³ measuring cylinder.
- Measure and record the temperature of the distilled water in the measuring cylinder.
- Add the 30 cm³ of distilled water to the **FA 5** in the cup.
- Stir constantly until the maximum temperature is reached.
- Measure and record the maximum temperature.
- Calculate and record the temperature rise.

Experiment 2

- Repeat **Experiment 1** but this time use 5.0–5.2g of **FA 5** and the other cup.
- Record all data from **both** experiments in one table.

Ι	
II	
III	
IV	

[4]

(b) Calculations

(i) Calculate the energy produced during **Experiment 1**. (Assume that 4.2 J change the temperature of 1.0 cm³ of solution by 1.0 °C.)

energy produced = J [1]

(ii) Calculate the number of moles of Na_2CO_3 used in **Experiment 1**.

moles of Na_2CO_3 = mol [1]

(iii) Use your answers to (b)(i) and (b)(ii) to calculate the enthalpy change, in kJ mol⁻¹, for the reaction below.
 Show your working.

 $Na_2CO_3(s) + aq \rightarrow Na_2CO_3(aq)$

enthalpy change =			kJ mol⁻¹
	sign	value	[1]
by using the same thermometer	. qua	antities of FA 5 , and	water, a

(c) (i) A student suggested that by using the same thermometer, quantities of **FA 5**, and water, a more accurate value for the temperature rise could be calculated.

Suggest how the student could obtain a more accurate measurement.

.....[1]

(ii) State the maximum error in a single thermometer reading in your experiment in (a).

maximum error =

Hence calculate the maximum percentage error in the measurement of the temperature rise in **Experiment 2**.

% error =

[2]

[Total: 10]

Qualitative Analysis

Where reagents are selected for use in a test, the **name** or **correct formula** of the element or compound must be given.

At each stage of any test you are to record details of the following:

- colour changes seen
- the formation of any precipitate and its solubility in an excess of the reagent added
- the formation of any gas and its identification by a suitable test.

You should indicate clearly at what stage in a test a change occurs.

If any solution is warmed, a **boiling tube** must be used.

Rinse and reuse test-tubes and boiling tubes where possible.

No additional tests for ions present should be attempted.

- **3 (a) FA 6** is a hydrated salt. It contains two cations and one anion, all of which are listed in the Qualitative Analysis Notes.
 - (i) Describe and carry out tests to identify the cations in **FA 6**.

Record your tests and observations in the space below.

The cations in FA 6 are

[5]

(ii) The anion in **FA 6** is a sulfite, sulfate or a halide.

Carry out a test to identify the anion in **FA 6**. Record your tests and observations in the space below.

The anion in **FA 6** is[2]

(iii) Give the ionic equation for **one** reaction you have carried out in (a)(i) or (a)(ii). Include state symbols.

......[1]

- (iv) The formula of **FA 6** is $XY_2Z_2 \cdot wH_2O$ where
 - X and Y are the cations present and Z is the anion present
 - w is the number of moles of water of crystallisation in the hydrated salt.

The relative formula mass of this compound is 392.0.

Using your conclusions from (a)(i) and (a)(ii), calculate the value of w, the number of moles of water of crystallisation.

(b) FA 7 and FA 8 are aqueous solutions of covalently bonded compounds.

Half fill the beaker with water and place it on a tripod and gauze. Heat until the water begins to boil and then turn off the Bunsen burner. This will be used as a hot water bath.

(i) Complete the table by carrying out the tests described.Use a 1 cm depth of FA 7 or FA 8 in a test-tube for each test.

(obs	ervation(s)
test	FA 7	FA 8
Test 1 Add an equal volume of dilute sulfuric acid and a few drops of FA 3 , aqueous acidified potassium manganate(VII), then		
place in the hot water bath for several minutes.		
Test 2 Add an equal volume of dilute sulfuric acid and an equal volume of aqueous potassium iodide, then		
add a few drops of aqueous starch.		
Test 3 Add an equal volume of aqueous iodine, then add aqueous sodium hydroxide until no further change occurs. Leave the tube to stand.		
Test 4 Add a few drops of FA 4 , then		
add aqueous ammonia.		

9

(ii) FA 8 contains an organic compound.

From your observation(s), suggest one **possible** identity for this compound. Explain your answer.

	name
	reason
	[2]
(iii)	State the type of reagent FA 7 acts as in its reaction with aqueous potassium iodide. Explain your answer.
	[Total: 18]

Qualitative Analysis Notes

1 Reactions of aqueous cations

ion	reac	tion with
ion	NaOH(aq)	NH ₃ (aq)
aluminium, A <i>l</i> ³⁺(aq)	white ppt. soluble in excess	white ppt. insoluble in excess
ammonium, NH₄⁺(aq)	no ppt. ammonia produced on heating	_
barium, Ba²⁺(aq)	faint white ppt. is nearly always observed unless reagents are pure	no ppt.
calcium, Ca²⁺(aq)	white ppt. with high [Ca ²⁺ (aq)]	no ppt.
chromium(III), Cr³⁺(aq)	grey-green ppt. soluble in excess	grey-green ppt. insoluble in excess
copper(II), Cu²+(aq)	pale blue ppt. insoluble in excess	blue ppt. soluble in excess giving dark blue solution
iron(II), Fe²⁺(aq)	green ppt. turning brown on contact with air insoluble in excess	green ppt. turning brown on contact with air insoluble in excess
iron(III), Fe³⁺(aq)	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess
magnesium, Mg²⁺(aq)	white ppt. insoluble in excess	white ppt. insoluble in excess
manganese(II), Mn²⁺(aq)	off-white ppt. rapidly turning brown on contact with air insoluble in excess	off-white ppt. rapidly turning brown on contact with air insoluble in excess
zinc, Zn²⁺(aq)	white ppt. soluble in excess	white ppt. soluble in excess

2 Reactions of anions

ion	reaction
carbonate, CO ₃ ^{2–}	CO ₂ liberated by dilute acids
chloride, C <i>l</i> ⁻(aq)	gives white ppt. with Ag ⁺ (aq) (soluble in $NH_3(aq)$)
bromide, Br⁻(aq)	gives cream ppt. with Ag ⁺ (aq) (partially soluble in $NH_3(aq)$)
iodide, I⁻(aq)	gives yellow ppt. with Ag⁺(aq) (insoluble in NH₃(aq))
nitrate, NO ₃ ⁻(aq)	NH_3 liberated on heating with $OH^-(aq)$ and Al foil
nitrite, NO₂⁻(aq)	NH_3 liberated on heating with OH ⁻ (aq) and Al foil
sulfate, SO ₄ ²-(aq)	gives white ppt. with Ba ²⁺ (aq) (insoluble in excess dilute strong acids)
sulfite, SO ₃ ^{2–} (aq)	gives white ppt. with Ba ²⁺ (aq) (soluble in excess dilute strong acids)

3 Tests for gases

gas	test and test result
ammonia, NH ₃	turns damp red litmus paper blue
carbon dioxide, CO ₂	gives a white ppt. with limewater (ppt. dissolves with excess CO ₂)
chlorine, Cl_2	bleaches damp litmus paper
hydrogen, H ₂	'pops' with a lighted splint
oxygen, O ₂	relights a glowing splint

		18	He ²	helium 4.0	10	Ne	neon 20.2	18	Ar	argon 39.9	36	Кr	krypton 83.8	54	Xe	xenon 131.3	86	Rn	radon -												
		17			6	ш	fluorine 19.0	17	Cl	chlorine 35.5	35	Br	bromine 79.9	53	I	iodine 126.9	85	At	astatine -				71	Lu	Iutetium 175.0	103	Ļ	lawren cium -			
		16			8	0	oxygen 16.0	16	ა	sulfur 32.1	34	Se	selenium 79.0	52	Te	tellurium 127.6	84	Ро	polonium I	116	L<	livermorium –	70	Υb	ytterbium 173.1	102	No	nobelium -			
		15			7	z	nitrogen 14.0	15	٩	phosphorus 31.0	33	As	arsenic 74.9	51	Sb	antimony 121.8	83	Bi	bismuth 209.0				69	Tm	thulium 168.9	101	Md	mendelevium -			
		14			9	U	carbon 12.0	14	N.	silicon 28.1	32	Ge	germanium 72.6	50	Sn	tin 118.7	82	РЬ	lead 207.2	114	ĿΙ	flerovium -	68	ч	erbium 167.3	100	Еm	fermium -			
		13			5	В	boron 10.8	13	Al	aluminium 27.0	31	Ga	gallium 69.7	49	In	indium 114.8	81	Tl	thallium 204.4				67		holmium 164.9	66	Es	einsteinium –			
											12	30	Zn	zinc 65.4	48	Cd	cadmium 112.4	80	Hg	mercury 200.6	112	С	copernicium -	99	Dy	dysprosium 162.5	98	ç	californium –		
ements										11	29	Cu	copper 63.5	47	Ag	silver 107.9	79	Au	gold 197.0	111	Rg	roentgenium 	65		terbium 158.9	97	Bk	berkelium -			
ble of Ele	Group									10	28	ïZ	nickel 58.7	46	Ъd	palladium 106.4	78	Ţ	platinum 195.1	110	Ds	darmstadtium -	64	Gd	gadolinium 157.3	96	Cm	curium I			
The Periodic Table of Elements	Gro				_					0	27	ပိ	cobalt 58.9	45	Rh	rhodium 102.9	77	Ir	iridium 192.2	109	Mt	meitnerium 	63	Eu	europium 152.0	95	Am	americium -			
The Pe			- T ¹⁰	hydrogen 1.0						ø	26	Ъe	iron 55.8	44	Ru	ruthenium 101.1	76	Os	osmium 190.2	108	Hs	hassium -	62	Sm	samarium 150.4	94	Pu	plutonium –			
					_			_		7	25	Mn	manganese 54.9	43		technetium -	75	Re	rhenium 186.2	107	Bh	bohrium –	61		5	93	Np	neptunium -			
									lo	ass			9	24	ų	chromium 52.0	42	Mo	molybdenum 95.9	74	×	tungsten 183.8	106	Sg	seaborgium -	60	ΡN	neodymium 144.4	92	⊃	uranium 238.0
				Key	atomic number	atomic symbol	name relative atomic mass			5	23	>	vanadium 50.9	41	qN	niobium 92.9	73	Та	tantalum 180.9	105	Db	dubnium –	59	Pr	praseodymium ne 140.9	91	Ра	protactinium 231.0			
						ato	rela			4	22	Ħ	titanium 47.9	40	Zr	zirconium 91.2	72	Ηf	hafnium 178.5	104	Rf	rutherfordium —			cerium 140.1	06	Th	thorium 232.0			
								-		ю	21	Sc	scandium 45.0	39	≻	yttrium 88.9	57-71	lanthanoids		89-103	actinoids		57	La	lanthanum 138.9	89	Ac	actinium –			
		2			4	Be	beryllium 9.0	12	Mg	magnesium 24.3	20	Ca	calcium 40.1	38	S	strontium 87.6	56	Ba	barium 137.3	88	Ra	radium -		ids			~				
		1			e	:	lithium 6.9	5	Na	sodium 23.0	19	×	potassium 39.1	37	Rb	rubidium 85.5	55	Cs	caesium 132.9	87	ц	francium -		lanthanoids			actinoids				

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.