

Cambridge International AS & A Level

CHEMISTRY 9701/11

Paper 1 Multiple Choice

May/June 2023

1 hour 15 minutes

You must answer on the multiple choice answer sheet.

You will need: Multiple choice answer sheet

Soft clean eraser

Soft pencil (type B or HB is recommended)

INSTRUCTIONS

There are **forty** questions on this paper. Answer **all** questions.

- For each question there are four possible answers **A**, **B**, **C** and **D**. Choose the **one** you consider correct and record your choice in soft pencil on the multiple choice answer sheet.
- Follow the instructions on the multiple choice answer sheet.
- Write in soft pencil.
- Write your name, centre number and candidate number on the multiple choice answer sheet in the spaces provided unless this has been done for you.
- Do not use correction fluid.
- Do not write on any bar codes.
- You may use a calculator.

INFORMATION

- The total mark for this paper is 40.
- Each correct answer will score one mark.
- Any rough working should be done on this question paper.
- The Periodic Table is printed in the question paper.
- Important values, constants and standards are printed in the question paper.

1 Element X has six more protons than element Y.

Which statement **must** be correct?

- **A** Atoms of element Y are smaller than atoms of element X.
- **B** Element X has a full shell of electrons.
- **C** Element X and element Y are in the same group.
- **D** Element X and element Y are in the same period.
- 2 Which statement explains why calcium has a higher melting point than barium?
 - A Calcium cations are smaller than barium cations and have a stronger attraction to the delocalised electrons.
 - **B** The structure of calcium is partly giant molecular.
 - **C** There are more delocalised electrons in calcium than in barium as it has a lower ionisation energy.
 - **D** There is greater repulsion between barium atoms as they have more complete electron shells than calcium atoms.
- 3 Three statements about potassium and chlorine and their ions are listed.
 - 1 The atomic radius of a potassium atom is greater than the atomic radius of a chlorine atom.
 - 2 The first ionisation energy of potassium is greater than the first ionisation energy of chlorine.
 - 3 The ionic radius of a potassium ion is greater than the ionic radius of a chloride ion.

Which statements are correct?

- A 1 only
- **B** 2 only
- **C** 1 and 3
- **D** 2 and 3
- **4** For which equilibrium do both of the equilibrium constants K_c and K_D have no units?

A
$$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$$

B
$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

$$\mathbf{C} \quad N_2O_4(g) \rightleftharpoons 2NO_2(g)$$

$$\mathbf{D} \quad SO_2(g) + \frac{1}{2}O_2(g) \rightleftharpoons SO_3(g)$$

5 Calcium carbide, CaC₂, reacts with water, as shown. The data below the equation show, in kJ mol⁻¹, the standard enthalpies of formation of the compounds involved.

$$CaC_2(s)$$
 + $H_2O(I)$ \rightarrow $CaO(s)$ + $C_2H_2(g)$
-60 -286 -635 +228

What is the standard enthalpy change of the reaction shown?

- **A** $-753 \, \text{kJ} \, \text{mol}^{-1}$
- **B** -61 kJ mol^{-1}
- **C** +61 kJ mol⁻¹
- **D** $+753 \, \text{kJ mol}^{-1}$

6 In the sodium chloride lattice the number of chloride ions that surround each sodium ion is called the coordination number of the sodium ions.

What are the coordination numbers of the sodium ions and the chloride ions in the sodium chloride lattice?

	coordination number of sodium ions	coordination number of chloride ions
Α	4	6
В	6	4
С	6	6
D	8	6

7 Histidine is an amino acid.

histidine

	1	2	3
Α	109.5°	107°	90°
В	120°	107°	109.5°
С	120°	120°	90°
D	120°	120°	109.5°

What are the approximate bond angles 1, 2, and 3?

8 The Contact process takes place at a pressure between 100 000 Pa and 200 000 Pa. A catalyst is used.

Which statement is correct?

- ${\bf A}$ A V_2O_5 catalyst is added to increase the equilibrium yield of the reaction.
- **B** Changes in pressure have no effect on the position of equilibrium.
- **C** The equilibrium yield of the reaction is very high under the conditions used.
- **D** An iron catalyst is added to increase the rate of reaction.

9 Bromine reacts with aqueous sodium hydroxide at 25 °C.

reaction 1
$$Br_2(aq) + 2NaOH(aq) \rightarrow NaBr(aq) + NaOBr(aq) + H_2O(I)$$

The NaOBr formed is unstable at 25 °C and reacts further.

reaction 2
$$3NaOBr(aq) \rightarrow 2NaBr(aq) + NaBrO_3(aq)$$

Which reactions are disproportionations?

- A both reaction 1 and reaction 2
- B neither reaction 1 nor reaction 2
- C reaction 1 only
- **D** reaction 2 only
- **10** Which statement is correct?
 - **A** The relative atomic mass of a 35 Cl atom is 35.5.
 - **B** The relative formula mass of CaCO₃ is 100.1.
 - **C** The relative isotopic mass of a ²⁴Mg atom is 24.3.
 - **D** The relative molecular mass of O_2 is 16.0.
- 11 lodine and propanone react according to the following equation.

$$I_2(aq) + CH_3COCH_3(aq) \rightarrow CH_3COCH_2I(aq) + HI(aq)$$

If the concentration of propanone is increased, keeping the total reaction volume constant, the initial rate of the reaction also increases.

What could be the reason for this?

- **A** A greater proportion of collisions are successful at the higher concentration.
- **B** The particles are further apart at the higher concentration.
- **C** The particles have more energy at the higher concentration.
- **D** There are more collisions per second between particles at the higher concentration.

12 Four successive ionisation energies (IE) of element E are shown.

Element E is in Period 3 of the Periodic Table.

fifth IE	sixth IE	seventh IE	eighth IE
/kJ mol ⁻¹	/kJ mol ⁻¹	/kJ mol ⁻¹	/kJ mol ⁻¹
16 000	20 000	24 000	

In which group of the Periodic Table is E?

- 14
- **B** 15
- 16
- 17
- 13 In this question you should assume that the gas formed behaves as an ideal gas.

A 1.7 g sample of Mg reacts with $50.0 \,\mathrm{cm}^3$ of $2.2 \,\mathrm{mol}\,\mathrm{dm}^{-3}$ HCl at $303 \,\mathrm{K}$ and $110 \,400 \,\mathrm{Pa}$.

Which volume of gas is produced, measured under these conditions?

- $\mathbf{A} \quad 1.3 \, \mathrm{dm}^3$
- **B** $1.6 \, \text{dm}^3$ **C** $2.5 \, \text{dm}^3$
 - **D** $5.0\,\mathrm{dm}^3$
- 14 Chlorine dioxide, ClO_2 , reacts with aqueous sodium hydroxide to produce water and a mixture of two sodium salts, $NaClO_2$ and $NaClO_3$.

What is the mole ratio of NaClO₂ to NaClO₃ in the product mixture?

- 1:2
- **B** 3:5
- **C** 1:1
- **D** 5:3
- **15** The temperature of a sample of an inert gas is increased.

What effect does this have on the number of molecules with the most probable energy and on the number of molecules with higher energy?

	number of molecules with the most probable energy	number of molecules with higher energy
Α	decreases	decreases
В	decreases	increases
С	increases	decreases
D	increases	increases

- **16** For which compound is there the greatest percentage loss of mass on strong heating?
 - A anhydrous calcium carbonate
 - B anhydrous calcium nitrate
 - C anhydrous magnesium carbonate
 - D anhydrous magnesium nitrate
- **17** The solids sodium chloride and sodium iodide both react with concentrated sulfuric acid at room temperature.

With NaCl, the products are NaHSO₄ and HCl.

With NaI, the products are NaHSO₄, HI, I₂, SO₂, H₂O, S and H₂S.

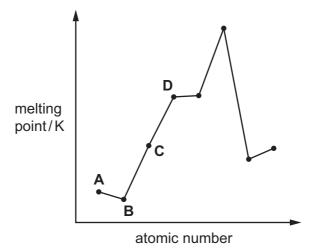
What is the explanation for this difference in products?

- A Chloride ions will displace iodine from the solution.
- **B** Hydrogen chloride is more volatile than hydrogen iodide.
- **C** lodide ions are better reducing agents than chloride ions.
- **D** Sulfuric acid is able to act as a dehydrating agent with NaI.
- 18 SiO₂ has a melting point of 1713 °C. It reacts with hot NaOH(aq) to form sodium silicate, Na₂SiO₃, and water.

No reaction occurs when SiO_2 is added to hot $H_2SO_4(aq)$.

What can be deduced from this information?

	chemical behaviour of SiO ₂	structure of SiO ₂
Α	amphoteric	giant
В	amphoteric	simple
С	acidic	giant
D	acidic	simple


19 Element X has the second largest atomic radius in its period. An atom of X has three occupied electron shells only.

The oxide of X is shaken with water.

What could be the pH of the resulting solution?

- **A** 5
- **B** 7
- C
- **D** 14
- 20 Which emission from an internal combustion engine contributes to the erosion of marble statues?
 - A carbon monoxide
 - **B** nitrogen
 - C nitrogen dioxide
 - **D** unburnt hydrocarbons
- **21** The diagram shows the melting points of eight elements with consecutive atomic numbers.

Which element could be sodium?

22 The boiling points of Br_2 , ICl and IBr are given in the table.

	Br ₂	IC1	IBr
boiling point/°C	59	97	116

Which row explains:

- why the boiling point of ICl is greater than Br₂
- why the boiling point of IBr is greater than IC*l*?

	boiling point of IC <i>l</i> is greater than Br ₂	boiling point of IBr is greater than IC <i>l</i>	
A	IC <i>l</i> has stronger instantaneous dipole-induced dipoles	IBr has stronger instantaneous dipole-induced dipoles	
В	IC <i>l</i> has permanent dipoles	IBr has stronger instantaneous dipole-induced dipoles	
С	IC1 has stronger instantaneous dipole-induced dipoles	eous IBr has stronger	
D	IC <i>l</i> has permanent dipoles	IBr has stronger permanent dipoles	

23 A solution contains both Mg²⁺(aq) and Sr²⁺(aq) at the same concentration.

The solution is divided into two equal portions. Aqueous sodium hydroxide is added dropwise to one portion. Dilute sulfuric acid is added dropwise to the other portion.

Which row is correct?

	precipitate seen first when NaOH(aq) is added	precipitate seen first when H ₂ SO ₄ (aq) is added
Α	magnesium hydroxide	magnesium sulfate
В	magnesium hydroxide	strontium sulfate
С	strontium hydroxide	magnesium sulfate
D	strontium hydroxide	strontium sulfate

24 Structural isomerism and stereoisomerism should be considered when answering this question.

If a molecule contains two non-identical chiral carbon atoms, four optical isomers exist.

How many isomers are there with:

- molecular formula C₇H₁₄O and
- a five-membered ring and
- a tertiary alcohol group?
- **A** 4
- **B** 5
- **C** 9
- **D** 13

25 Which reagent will react with pentan-3-ol to give a mixture of stereoisomers?

- A acidified potassium dichromate
- B concentrated sulfuric acid
- c ethanoic acid in the presence of a little concentrated H₂SO₄
- **D** hydrogen chloride

26 An organic molecule W contains 3 carbon atoms. It requires 4.5 molecules of oxygen for complete combustion.

What could W be?

- A propane
- **B** propanoic acid
- **C** propanone
- **D** propan-1-ol

Which equation represents a reaction that proceeds through initiation, propagation and termination steps?

A
$$C_4H_{10} + Cl_2 \rightarrow C_4H_9Cl + HCl$$

B
$$C_5H_{11}Br + NaOH \rightarrow C_5H_{11}OH + NaBr$$

$$\textbf{C} \quad C_6 \textbf{H}_{12} \, + \, \textbf{H}_2 \textbf{O} \, \rightarrow \, C_6 \textbf{H}_{13} \textbf{OH}$$

D
$$C_6H_{13}CHO + HCN \rightarrow C_6H_{13}CH(OH)CN$$

28 Structural isomerism and stereoisomerism should be considered when answering this question.

A set of isomeric hydrocarbons:

- all contain 14.3% by mass of hydrogen
- all react with bromine by addition, 0.280 g of each hydrocarbon reacting with 0.799 g of bromine.

What is the maximum number of isomeric compounds in the set?

A 1 **B** 3 **C** 4 **D** 5

29 Which row describes the solvent used and type of reaction occurring when bromoethane reacts with NaOH to form ethene?

	solvent	type of reaction
Α	ethanol	elimination
В	ethanol	substitution
С	water	elimination
D	water	substitution

30 Which row describes the type of reaction that occurs when propan-1-ol reacts to form the named carbon-containing product?

	carbon-containing product	type of reaction
Α	1-chloropropane	addition to propan-1-ol
В	carbon monoxide	complete combustion of propan-1-ol
С	propene	dehydration of propan-1-ol
D	propanal	reduction of propan-1-ol

- 31 Which statement describes what happens when 2-chloro-2-methylpropane is warmed with NaOH(aq)?
 - **A** This secondary halogenoalkane reacts by a mixture of an $S_N 1$ and an $S_N 2$ mechanism.
 - **B** This secondary halogenoalkane reacts only by an S_N2 mechanism.
 - **C** This tertiary halogenoalkane reacts mostly by an S_N1 mechanism.
 - **D** This tertiary halogenoalkane does **not** react with hydroxide ions under these conditions.

 ${\bf 32} \quad \text{How many structurally isomeric secondary alcohols are there with the molecular formula C_5H$_{12}$O?}$

	Α	1	В	2	С	3	D	4
33	Wh	ich reagent:						
		 can confi 	rm t	ne presence of a	car	bonyl group in ar	n org	anic compound
		• does not	dist	inguish between	alde	ehydes and ketor	nes?	
	Α	acidified K ₂ Cr ₂ C	D ₇					
	В	2,4-DNPH reag	ent					
	С	Fehling's reage	nt					
	D	LiA <i>l</i> H ₄						
34		ich compound g merism?	ives	a positive test v	with	alkaline aqueou	s io	dine and does not show optical
	Α	CH ₃ COCH ₂ CH ₂	OH					
	В	CH ₃ CH ₂ CH(OH	I)CH	0				
	С	CH ₃ COCH(OH)	CH ₃	3				
	D	(CH ₃) ₂ C(OH)CH	Ю					

35 Two samples of compound X were treated separately with different reagents which were added in excess.

The products of these two reactions are shown.

Which reagents could be used for reaction 1 and reaction 2?

	reaction 1	reaction 2
Α	hot acidified sodium dichromate(VI)	Na
В	hot acidified sodium dichromate(VI)	NaBH ₄
С	Tollens' reagent followed by HCl(aq)	Na
D	Tollens' reagent followed by HCl(aq)	NaBH ₄

- **36** Which method could produce butanoic acid?
 - A an acid–base reaction involving CH₃CH₂CH₂CO₂Na
 - **B** the hydrolysis of CH₃CH₂CH₂CH₂CN
 - **C** the acidic hydrolysis of CH₃CH₂COOCH₂CH₂CH₃
 - **D** the oxidation of CH₃CH₂CH₂OH

- **37** Which ester may be hydrolysed to produce two products, one of which may be reduced to the other?
 - A CH₃CH₂CO₂CH₃
 - **B** CH₃CH(CH₃)CO₂CH₂CH(CH₃)₂
 - C CH₃CH₂CO₂CH(CH₃)₂
 - **D** (CH₃)₂CHCO₂CH(CH₃)₂
- **38** Two compounds, X and Y, are mixed and a little concentrated H₂SO₄ is added.

Ester Z is found in the resulting mixture of products.

Which two compounds could be X and Y?

	Х	Y
Α	CH ₃ CH ₂ OH	CH(CO ₂ H) ₃
В	CH₃CH₂OH	CH ₃ CO ₂ CH ₂ CH(OH)CH ₂ OCOCH ₂ CH ₃
С	CH₃CO₂H	CH ₃ CH ₂ CO ₂ CH ₂ CH(OH)CH ₂ OH
D	CH₃CO₂H	CH ₂ (OH)CH(OH)CH ₂ (OH)

39 The diagram shows a section of a polymer molecule.

Which monomer will produce this polymer?

- A CH₂=CH₂
- B CH₃CH=CH₂
- C CH₃CH=CHCH₃
- D CH₂=CH-CH=CH₂

40	There are two naturally occuring isotopes of bromine. One isotope has 44 neutrons. isotope has 46 neutrons.	The	other
	Ignoring fragments, how many peaks are there in the mass spectrum of tribromomethane,	¹² C ¹ F	HBr ₃ ?

A 2 **B** 3 **C** 4 **D** 6

BLANK PAGE

BLANK PAGE

BLANK PAGE

Important values, constants and standards

molar gas constant	$R = 8.31 \mathrm{J} \mathrm{K}^{-1} \mathrm{mol}^{-1}$
Faraday constant	$F = 9.65 \times 10^4 \mathrm{C}\mathrm{mol}^{-1}$
Avogadro constant	$L = 6.02 \times 10^{23} \text{mol}^{-1}$
electronic charge	$e = -1.60 \times 10^{-19} \mathrm{C}$
molar volume of gas	$V_{\rm m} = 22.4 {\rm dm^3 mol^{-1}}$ at s.t.p. (101 kPa and 273 K) $V_{\rm m} = 24.0 {\rm dm^3 mol^{-1}}$ at room conditions
ionic product of water	$K_{\rm w} = 1.00 \times 10^{-14} \rm mol^2 dm^{-6} (at 298 K (25 {}^{\circ}C))$
specific heat capacity of water	$c = 4.18 \mathrm{kJ kg^{-1} K^{-1}} (4.18 \mathrm{J g^{-1} K^{-1}})$

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

The Periodic Table of Elements

	18	2 H	ַם	helium 4.0	10	Ne	neon 20.2	18	Ā	argon 39.9	36	궃	krypton 83.8	22	Xe	xenon 131.3	98	찜	radon	118	Og	oganesson -							
	17				6	ш	fluorine 19.0	17	Cl	chlorine 35.5	35	ğ	bromine 79.9	53	П	iodine 126.9	85	Ą	astatine -	117	<u>s</u>	tennessine -							
	16				8	0	oxygen 16.0	16	S	sulfur 32.1	34	Se	selenium 79.0	52	Б	tellurium 127.6	84	Ъо	moloulum -	116	^	livermorium -							
	15											7	z	nitrogen 14.0	15	۵	phosphorus 31.0	33	As	arsenic 74.9	51	Sb	antimony 121.8	83	Ξ	bismuth 209.0	115	Mc	moscovium -
	14														9	ပ	carbon 12.0	14	S	silicon 28.1	32	Ge	germanium 72.6	20	Sn	tin 118.7	82	Ъ	lead 207.2
	13				2	В	boron 10.8	13	Ν	aluminium 27.0	31	Ga	gallium 69.7	49	In	indium 114.8	81	11	thallium 204.4	113	R	nihonium –							
										12	30	Zu	zinc 65.4	48	ၓ	cadmium 112.4	80	Ŗ	mercury 200.6	112	ပ်	copernicium –							
										7	29	C	copper 63.5	47	Ag	silver 107.9	62	Αn	gold 197.0	111	Rg	roentgenium -							
Group										10	28	Ż	nickel 58.7	46	Pd	palladium 106.4	78	చ	platinum 195.1	110	Ds	darmstadtium -							
Gre	-									6	27	ပိ	cobalt 58.9	45	씸	rhodium 102.9	11	'n	iridium 192.2	109	¥	meitnerium -							
		- ⊐	=	hydrogen 1.0						80	56	Ьe	iron 55.8	4	R	ruthenium 101.1	9/	SO	osmium 190.2	108	Η̈́	hassium -							
										7	25	M	manganese 54.9	43	ပ	technetium -	75	Re	rhenium 186.2	107	В	bohrium –							
					_	pol	ass			9	24	ပ်	chromium 52.0	42	Mo	molybdenum 95.9	74	≥	tungsten 183.8	106	Sg	seaborgium -							
				Key	atomic number	atomic symbo	name relative atomic mass			2	23	>	vanadium 50.9	41	g	niobium 92.9	73	<u>a</u>	tantalum 180.9	105	9	dubnium -							
								atc	ie.			4	22	ı	titanium 47.9	40	Z	zirconium 91.2	72	Ξ	hafnium 178.5	104	Ŗ	rutherfordium -					
										က	21	Sc	scandium 45.0	36	>	yttrium 88.9	57-71	lanthanoids		89-103	actinoids								
	7				4	Be	beryllium 9.0	12	Mg	magnesium 24.3	20	Ca	calcium 40.1	38	Š	strontium 87.6	56	Ba	barium 137.3	88	Ra	radium							
	~				3	=	lithium 6.9	1	Na	sodium 23.0	19	\prec	potassium 39.1	37	Rb	rubidium 85.5	55	Cs	caesium 132.9	87	ቴ	francium _							

71		lutetium 175.0	103	۲	lawrencium	I	
20	Υp	ytterbium 173.1	102	9 N	nobelium	ı	
69	T	thulium 168.9	101	Md	mendelevium	ı	
89	ш	erbium 167.3	100	Fn	fermium	ı	
29	운	holmium 164.9	66	Es	einsteinium	ı	
99	ò	dysprosium 162.5	86	Ç	californium	ı	
65	Тр	terbium 158.9	26	益	berkelium	ı	
64	9 G	gadolinium 157.3	96	Cm	curium	ı	
63	En	europium 152.0	92	Am	americium	ı	
62	Sm	samarium 150.4	96	Pn	plutonium	ı	
61	Pm	promethium -	93	ď	neptunium	ı	
09	PΝ	neodymium 144.4	92	\supset	uranium	238.0	
69	Ā	praseodymium 140.9	91	Ра	protactinium	231.0	
58	Oe	cerium 140.1	06	T	thorium	232.0	
22	Га	lanthanum 138.9	89	Ac	actinium	ı	

lanthanoids

actinoids