Electrochemistry - 2021 AS

1. Nov/2021/Paper_12/No.32

Four solutions, each of concentration 0.1 mol dm⁻³, were tested with a pH meter. The results are

solution	formula of acid or base	рН	
acid 1	CH₃CO₂H	4	
acid 2	HNO ₃	1	
base 1	CH ₃ NH ₂	11	
base 2	NaOH	14	

Which statements explain these results?

Acid 2 has a lower pH than acid 1 because it is more soluble.

Base 2 has a higher concentration of hydroxide ions in solution than base

Ralpacaliloi Acid 1 dissociates less than acid 2. Acid

_	7.7 /0.004 /5			
7	Nov/2021/Paper_	$-21/N_0$ 10	(C)	١
⊿.	1101/2021/1 apci_	_21/110.11	v,	,

- (c) Hydrogen sulfide gas, H₂S(g), is slightly soluble in water. It acts as a weak acid in aqueous solution.
 - (i) State the meaning of weak acid.

Its an	acid	Head	partially	dissociates
into H	t+·	**	′)	[1

(ii) Give the formula of the conjugate base of H,S.

(iii) H₂S(aq) reacts slowly with oxygen dissolved in water. The reaction is represented by the following equation.

$$H_2S(aq) + \frac{1}{2}O_2(aq) \rightarrow H_2O(I) + S(s)$$

Explain, with reference to oxidation numbers, why this reaction is a redox reaction.

3. Nov/2021/Paper_21/No.3

Phosphorus is a reactive Period 3 element.

(a) Phosphorus has several allotropes. Details of two allotropes are given.

allotrope of phosphorus	formula	melting point/°C
white	P₄	44
red	Р	590

(i) White phosphorus and red phosphorus both have covalent bonding.

Suggest the types of structure shown by white phosphorus (P₄) and red phosphorus (P).

Explain why red phosphorus (P) has a higher melting point than white phosphorus (P_a).

structure of P₄ Simple molecular

structure of P Giant molecular

require alot of energy to overcome it while

Py has weak intermolecular forces of attraction [3]

(ii) Red phosphorus (P) forms when white phosphorus (P4) is exposed to sunlight.

$$\frac{1}{4}P_4(s) \rightarrow P(s) \qquad \Delta H = -17.6 \text{ kJ mol}^{-1}$$
white red

Use this information to draw a reaction pathway diagram to show the formation of red phosphorus (P) from white phosphorus (P_a).

[1]

(b) Some reactions of $P_a(s)$ are shown in the reaction scheme.

- (i) State the oxidation number of phosphorus in P₄O₁₀.
- (ii) Deduce the identity of Q and hence construct chemical equations for reactions 1 and 2.

reaction 1
$$PCI_5 + A_1H_2O \rightarrow A_2PO_4 + 5HCI$$

reaction 2 $P_4O_{10} + A_2O \rightarrow A_2PO_4$ [2]

(c) Triphenylphosphine is used in a type of reaction known as a Wittig reaction.

triphenylphosphine

(i) Give the empirical formula of triphenylphosphine.

Calso ils molecular formular)

In a Wittig reaction, an aldehyde reacts with a halogenoalkane to form an alkene. The conversion is shown in the following unbalanced equation.

Compound H can be made from propanal, C_2H_5CHO . Stage 3 in the reaction scheme is a Wittig reaction.

stage 1
$$C_2H_5CHO$$
 \longrightarrow G

stage 2 G $\xrightarrow{\text{red phosphorus and } I_2}$ $C_2H_5CH_2I$

stage 3 $C_2H_6CH_2I + C_2H_6CHO$ $\xrightarrow{\text{triphenylphosphine}}$ G

(Wittig reaction)

(ii) State the types of reaction that occur in stages 1 and 2

(iii) Draw the structures of G and H in the boxes provided.

(d) Identify the organic products formed when compound J, shown below, is heated with hot concentrated acidified manganate(VII) ions.

[Total: 14]

4. March/2021/Paper_12/No.8

VO₂Cl reacts with NaI under acidic conditions.

$$2VO_2Cl + 2H_2SO_4 + 2NaI \rightarrow VOCl_2 + VOSO_4 + I_2 + Na_2SO_4 + 2H_2O_4$$

The oxidation state of Cl is -1 in VO_2Cl and in $VOCl_2$.

Which row about this reaction is correct?

	vanadium	iodine
Α	is oxidised	is oxidised
В	is oxidised	is reduced
C	is reduced	is oxidised
D	is reduced	is reduced

		ed in NaI, I
has on white in	oxidation	number of -1
unupe 1	o (reo)	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
√ 0 ₂ cl	Vocia	1 VOSO4
V+(-2)2+-1=0		V+-2+-2=0
V=+5	V= +#	* **
	Oxidation	Jeerrain - The

5. June/2021/Paper_11/No.9

When hydrogen iodide is reacted with concentrated sulfuric acid, several reactions occur, including:

$$8HI + H_2SO_4 \rightarrow H_2S + 4H_2O + 4I_2 \\ 8H^\dagger + 8I + 2H^\dagger + 50 2^2 \rightarrow 2H^\dagger + 5 + 4H_2O + 4I_2.$$
 Which row gives the change in oxidation number of iodine and of sulfur in this reaction?

	change in oxidation number of iodine	change in oxidation number of sulfur
Α	– 1	+6
В	-1	+8
С	+1	-6
D	+1	-8

6. June/2021/Paper_11/No.25

When an organic compound is oxidised, any oxygen atom gained by the organic molecule is considered to be from a water molecule also producing $2H^+ + 2e^-$. Any hydrogen atom lost may be considered to be lost as $H^+ + e^-$.

These changes can be represented by the following two equations.

$$H_2O \rightarrow [O] + 2H^+ + 2e^-$$

 $[H] \rightarrow H^+ + e^-$

Compound X is oxidised by heating under reflux with hot, acidified potassium dichromate(VI) for one hour. The half-equation for the reduction reaction is shown.

$$Cr_2O_7^{2-}$$
 + 14H $^+$ + 6e $^ \rightarrow$ 2Cr $^{3+}$ + 7H $_2O$

Under these conditions, one mole of potassium dichromate(VI) oxidises three moles of X.

7. June/2021/Paper_12/No.9

The equation for a redox reaction is shown.

Which species is being oxidised in this reaction?

A
$$Sn^{2+}$$
 B Cl^{-} **C** Hg^{+} **D** Hg^{2+}

8. June/2021/Paper 13/No.32

B

The equation shows the decomposition of three moles of an ion containing chromium in an acid

$$(+(2x+))^{-3}$$

 $(+(2x+))^{-3}$
 $(-(2x+))^{-3}$
 $(-(2$

Which statements are correct?

- One mole of CrO₄³⁻ is reduced.
- Two moles of CrO₄³⁻ are oxidised.
- Three moles of electrons are transferred.

exidution number

9. June/2021/Paper_13/No.35

Which reagents produce a solution of sodium chlorate(V)

- chlorine and hot concentrated sodium hydroxide solution
- chlorine and cold dilute sodium hydroxide solution Chlorate(1)
- chlorine dissolved in water at room temperature Hock 3 acar

10. June/2021/Paper_23/No.1 (f)

Sodium chlorate(I), NaClO, oxidises dilute hydrochloric acid to form three products. The products which contain chlorine have chlorine species with oxidation number -1 or 0.

No other species changes its oxidation number during the reaction.

Use this information to complete the ionic equation.

[Total: 13]