Analytical chemistry - 2021

1. Nov/2020/Paper_41/No.9

The proton NMR spectrum of compound **E** in the solvent CDC l_3 is shown. The molecular formula of compound **E** is $C_9H_{10}O_2$.

(a) Explain why CDCl₃ is used as a solvent instead of CHCl₃

______[1]

(b) Explain why TMS is added to give the small peak at chemical shift δ = 0.

______[1]

(c) Compound E is hydrolysed by hot NaOH(aq), giving two organic products only. One of these products is ethanol.

Name the functional group in compound E that is hydrolysed by hot NaOH(aq).

.....[1]

[2]

Each molecule of compound E contains five protons which give rise to the peaks between δ = 7.0 and δ = 8.5.
Identify the functional group in compound E which contains these protons. [1]
Give the structural formula of compound E.
[1]
he mass spectrum of compound E includes fragment ions with <i>ml</i> e values of 29 and 77.
ive the formulae of these fragment ions.
agment ion with <i>m</i> / <i>e</i> = 29
agment ion with <i>m</i> / <i>e</i> = 77[2]
[2] [Total: 9]

2. Nov/2020/Paper_42/No.6d,6e

(d) Compound A can also be used to make the amide CH₃CONHC₂H₅.

The proton NMR spectrum of the amide $CH_3CONHC_2H_5$ in the solvent $CDCl_3$ is shown.

(i) Explain why CDCl₃ is used as a solvent instead of CHCl₃

_		
- [/	17	1
- 1 -		1
 L	• 1	1

(ii) Complete the diagram with the chemical shifts, δ , of the protons labelled in the CH₃CONHC₂H₅ molecule.

(iii) State and explain how the proton NMR spectrum of the amide $CH_3CONHC_2H_5$ differs when dissolved in D_2O rather than $CDCl_3$.

[2]

(e) The mass spectrum of the amide $CH_3CONHC_2H_5$ includes a fragment ion with m/e value of 58. Give the molecular formula of this fragment ion.

fragment ion with *m/e* value of 58 is[1]

3. June/2020/Paper_41/No.6e,6f

(e) An ester of pyruvic acid, ${\bf F}$, is dissolved in CDC l_3 and analysed by proton NMR spectroscopy.

The proton NMR spectrum of **F** is shown.

Use the proton NMR spectrum of **F** to complete the table.

chemical shift (δ)	group responsible for the peak	splitting pattern	number of ¹ H atoms responsible for the peak
1.3			
2.2			
4.0			

(f) Deuterium oxide, D_2O , where D is 2H , can be used as a solvent in proton NMR spectroscopy. The proton NMR spectrum of alanine in CDC l_3 has 4 peaks. The proton NMR spectrum of alanine in D_2O has 2 peaks.

alanine