Benzene and compounds - 2021

1. Nov/2020/Paper_41/No.7

Phenol, C₆H₅OH, is a weak acid.

(a) Phenol can be made from phenylamine, C₆H₅NH₂.

Give the reagents and conditions for this reaction.

.....[2

(b) Phenol reacts with dilute aqueous nitric acid under room conditions to give a mixture of two isomeric products with molecular formula C₆H₅NO₃.

Use the *Data Booklet* to draw the structural formulae of these two products in the boxes and name each product.

[2]

(c) Phenol reacts with an excess of aqueous bromine.

(i) Draw and name the organic product of this reaction in the box.

[2]

	(ii)	Describe two visual observations that can be made when phenol reacts wit aqueous bromine.	h an excess of
		observation 1	
		observation 2	[1]
(d)	Wri	ite an equation for a neutralisation reaction in which phenol behaves as an a	cid.
			[1]
(e)	Wa	ater, phenol and ethanol can all behave as acids.	
		ace these three compounds in order of acidity, starting with the most acidic. plain your answer.	
		most acidic least acidic	
		Colli	
			[3]
			[Total: 11]

2. Nov/2020/Paper_41/No.8

Benzene, C₆H₆, can be obtained from crude oil.

- (a) Benzene reacts with bromine, in the presence of a suitable catalyst, forming bromobenzene as one product.
 - (i) Give the name or formula of the other product of this reaction.

.....[1]

(ii) In the presence of the catalyst, bromine can be considered to form the electrophile Br⁺.

Complete the mechanism by which benzene reacts with Br⁺, using curly arrows to show the movement of electron pairs.

(iii) Name this mechanism.

(b) Benzene can be used as a starting material in the synthesis of cyclohexylmethanol, $C_6H_{11}CH_2OH$, as outlined below.

(i) Identify a suitable reagent and a suitable catalyst for step 1.

(ii) Draw the structure of A.

[1]

(iii)	Identify suitable reagents for steps 3 and 4.	
	step 3	
	step 4	
		[2
(iv)	Deduce the number of peaks in the carbon-13 NMR spectrum of cyclohexylmethanol.	
		[1
	[Total:	10

3. Nov/2020/Paper_42/No.7

(a) Describe the structure of a benzene molecule, C₆H₆.

Your answer should include:

- the shape of the molecule
- the relative lengths of the C–C bonds
- bond angles
- the hybridisation of the carbon atoms
- the overlap between orbitals that produces each type of bond present.

10		
0.4	į(O	
[4]	10	

(b) Benzene can be used as a starting material to produce phenylamine by a two-step synthesis.

(i) Step 1 is the reaction of benzene with NO₂⁺ ions.

Complete the mechanism and draw the intermediate of step 1. Include all relevant charges and curly arrows to show the movement of electron pairs.

[2]

State the name of the mechanism in (b)(i).	
Identify the reagents needed to produce NO_2^+ ions.	[1]
Write an equation to explain how these reagents produce NO ₂ ⁺ ions.	
Give reagents and conditions for the production of phenylamine from nitrobenzene step 2.	e in
	[2]
Write an equation for this reaction. You may use structural or displayed formulae.	
Name the org <mark>anic prod</mark> uct of this reaction.	[1]
Describe two observations that can be seen when phenylamine reacts with Br ₂ (aq).	[1]
observation 1	
observation 2	 [1]
	Identify the reagents needed to produce NO ₂ * ions. Write an equation to explain how these reagents produce NO ₂ * ions. Give reagents and conditions for the production of phenylamine from nitrobenzene step 2. henylamine reacts with Br ₂ (aq). Write an equation for this reaction. You may use structural or displayed formulae.

d)	leas	cribe the relative basicities of ammonia t basic. ain your answer in terms of their structu	ethylamine and phenylamine, starting res.	with the
		least basic	most basic	
				[3]
(e)	1,3	-diaminopropane, H ₂ NCH ₂ CH ₂ CH ₂ NH ₂ , o	an be used to make polyamides.	
	(i)	Identify one compound that would read	t with 1,3-diaminopropane to form a polya	
	(ii)	Draw a section of the polymer chain for you chose in (e)(i).	med from 1,3-diaminopropane and the co	ompound
		Your answer should: include four monomer residues (tw.) show the amide link fully displayed clearly identify one repeat unit of the	,	
		···		

[2]

[Total: 20]

	enzene reacts with bromine in the presence of an aluminium bromide catalyst, $AlBr_3$, to formobenzene. This is a substitution reaction. No addition reaction takes place.	orm
(i)	Explain why no addition reaction takes place.	
		[1]
All	Br ₃ reacts with bromine to generate an electrophile, Br ⁺ .	
(ii)	Draw the mechanism of the reaction between benzene and Br ⁺ ions. Include all relevances and charges.	/ant
	Cambidoe	[3]
(iii)	Write an equation to show how the $AlBr_3$ catalyst is reformed.	
	80	[1]
(b) Su	ggest why bromination of phenol occurs more readily than bromination of benzene.	
		[2]

4. June/2020/Paper_41/No.5

(c) (i) There are four different carbocations with the same formula, C₄H₉⁺. One structure is given in the table.

Suggest the structural formulae of the three other carbocations.

structure 1	structure 2	structure 3	structure 4
CH ₃ CH ₂ CH ₂ CH ₂ ⁺			

[3]

(ii) Benzene reacts with each of these carbocations in separate Friedel-Crafts alkylation reactions.

In each reaction an organic compound with formula $C_{10}H_{14}$ is formed. The number of peaks observed in the carbon-13 NMR spectrum of each compound is given.

Suggest the structures for the three other compounds;

[4]

[Total: 14]

June/202 (a) (i)	0/Paper_42/No.4 When benzene undergoes nitration a nitro group substitutes at a carbon atom.
	State the shape (geometry) around the substituted carbon atom
	in the benzene molecule,
	in the intermediate complex,
	in the nitrobenzene product.
(ii)	Naphthalene, $C_{10}H_8$, is an arene hydrocarbon.
. ,	naphthalene
	When naphthalene undergoes nitration, a mixture of two organic compounds is formed. Each compound contains one nitro group.
	Suggest the structures of these compounds.
	structure 1 structure 2
	R.o.
	[1]

5.

(b) Naphthalene can be oxidised under certain conditions to phthalic anhydride, C₈H₄O₃, carbon dioxide and water.
 Construct an equation for this reaction. Use [O] to represent an atom of oxygen from the oxidising agent.

(c) The indicator, phenolphthalein, can be synthesised from phthalic anhydride and phenol under certain conditions.

- (d) (i) Name the functional groups, in addition to the benzene ring, present in a phenolphthalein molecule.
 -[1]
 - (ii) Phenolphthalein reacts separately with the two reagents shown in the table.

Complete the table by:

- drawing the structures of the organic products formed (part of the structure has been given for you)
- stating the types of reaction.

reagent	organic product structure	type of reaction
an excess of hot NaOH(aq)		
an excess of Br ₂ (aq)		

(e) Phenolphthalein is an indicator and is represented by the formula HIn. Phenolphthalein, HIn, is a weak acid.

The K_a value for phenolphthalein is $5.0 \times 10^{-10} \, \text{mol dm}^{-3}$ at 298 K. This indicator changes colour at a pH of approximately 8.8.

Calculate the ratio $\frac{[In^-]}{[HIn]}$ at pH 8.8.

(f) Methyl orange is another acid-base indicator. Its structure in aqueous solution at pH 4.4 is shown.

methyl orange

(i) On the structure of methyl orange, circle the bond or bonds that make this compound a dye. [1]

The colour of this indicator changes between pH 3.2 and pH 4.4.

(ii) Suggest the structure of methyl orange at pH 3.0. Assume the -SO₃-Na⁺ group is unreactive.

(g) Methyl orange can be synthesised as shown.

- (i) Deduce the identities of compounds R and S and draw their structures in the boxes. [2
- (ii) Suggest reagents and conditions for step 1 and step 2.

[Total: 19]