Electrochemistry - 2021

1.	N	01/	120	าวก	/Paper	11/	/NIA	2
1.	I۷	UV.	/ Z L	JZU	/ Pabei	41/	INO	. ၁

(a)	Identify the substances	liberated at the	anode	and at t	the cathode	during the	electrolysis	of
	aqueous sodium sulfate	, Na ₂ SO ₄ (aq).						

anode	
cathode	
	[1]

(b) When molten sodium chloride is electrolysed, chlorine is liberated at the anode and sodium is liberated at the cathode.

A sample of molten sodium chloride is electrolysed for 1.50 hours using a current of 4.50 A.

Calculate the volume of chlorine and the mass of sodium that are liberated under room conditions.

(c)	The equation representing the standard electrode potential, E°, for the reduction of MnO ₄ -(aq
	to Mn ²⁺ (aq) in acid solution is given.

$$MnO_4^-(aq) + 8H^+(aq) + 5e^- \implies Mn^{2+}(aq) + 4H_2O(I)$$
 $E^{\circ} = +1.52V$

(i) Draw a diagram of the apparatus that would be used to measure the E° value of this half-cell. Your diagram should be fully labelled to identify all apparatus, substances and conditions.

(ii) Use the Data Booklet to identify a substance that could be used to oxidise Mn²⁺ ions to MnO₄⁻ ions under standard conditions.
 Write an equation for the reaction.

.....[2]

[Total: 11]

(a)	Identify the substances liberated at the anode and at the cathode during the electrolysis of saturated $KCI(aq)$.
	at the anode
	at the cathode[1]
(b)	When dilute sulfuric acid is electrolysed, oxygen is liberated at the anode.
	Dilute sulfuric acid is electrolysed for 15.0 minutes using a current of 0.750A.
	Calculate the volume of oxygen that is liberated under room conditions.
	call bilde
	volume of oxygen = cm ³ [3]
(c)	The halogens chlorine, bromine and iodine differ in their strengths as oxidising agents. These strengths are indicated by the E° values for these halogens.
	(i) Give the E° values for chlorine, bromine and iodine acting as oxidising agents.
	(ii) Deduce which of chlorine, bromine and iodine will react with a solution of Sn²+(aq) under standard conditions.
	Explain your answer. Include a relevant equation in your explanation.
	[3]

2. Nov/2020/Paper_42/No.4

(iii	i)	An excess of chlorine is added to a solution of acidified Mn ²⁺ (a	q) under standard conditions
		Give the formula of the product of this reaction that contains	manganese.
			[1
		electrochemical cell can be made by connecting an Fe ³⁺ /Fe f-cell under standard conditions.	²⁺ half-cell to an S ₂ O ₈ ²⁻ /SO ₄
(i	i)	Calculate the standard cell potential of this electrochemical	cell.
		E ^e c	ell = V [.
(ii	i)	State the material that should be used as the electrode in ea	ach half-cell.
		in the Fe ³⁺ /Fe ²⁺ half-cell	
		in the S ₂ O ₈ ²⁻ /SO ₄ ²⁻ half-cell	
(iii	i)		the value of the cell potentia
		S ₂ O ₈ ²⁻ /SO ₄ ²⁻ half-cell	
		·# A PaiP	[Total: 12

3. March/2020/Paper_42/No.3

Gold is an unreactive metal that can only be oxidised under specific conditions.

(a) The standard electrode potential, E° , of Au³⁺(aq)/Au(s) is +1.50 V.

(i)	Define the term standard electrode potential.
	[2]

(ii) Draw a fully labelled diagram of the apparatus that should be used to measure the standard cell potential, E_{cell}^{\bullet} , of $Au^{3+}(aq)/Au(s)$ and $HNO_3(aq)/NO(g)$.

Some relevant half-equations and their standard electrode potentials are given.

	half-equation	E∘/V
1	$Au^{3+}(aq) + 3e^{-} \rightleftharpoons Au(s)$	+1.50
2	$[AuCl_4]^-(aq) + 3e^- \rightleftharpoons Au(s) + 4Cl^-(aq)$	+1.00
3	$NO_3^-(aq) + 4H^+(aq) + 3e^- \implies NO(g) + 2H_2O(l)$	+0.96

(iii)	Write an ionic equation to show the spontaneous reaction that occurs when an electric
	current is drawn from the cell in (a)(ii).

.....[1]

(iv) Calculate the E_{cell}^{\bullet} of the reaction in (a)(iii).

(v) Gold can be oxidised by a mixture of concentrated hydrochloric acid and concentrated nitric acid, known as *aqua regia*. Concentrated hydrochloric acid is 12 mol dm⁻³. Concentrated nitric acid is 16 mol dm⁻³.

Explain why aqua regia is able to dissolve gold.

In your answer, state and explain what effect the use of concentrated hydrochloric acid and concentrated nitric acid have on the E values of half-equations 2 and 3.

29N-2 2	
	••••
	•••••
	r01

(b) Aqueous gold(III) chloride, $AuCl_3$, reacts with aqueous hydrogen peroxide, H_2O_2 , under certain conditions, forming Au, O_2 and HCl.

A student carries out separate experiments using different initial concentrations of $AuCl_3$ and H_2O_2 . The initial rate of each reaction is measured.

The table shows the results that are obtained.

experiment	[AuC l_3] /moldm $^{-3}$	[H ₂ O ₂] /moldm ⁻³	rate of production of O ₂ (g) /dm³ minute-1
1	0.05	0.50	7.66 × 10 ⁻²
2	0.10	0.50	1.53 × 10 ⁻¹
3	0.15	1.00	4.60 × 10 ⁻¹

(i)	Write an equation for the reaction of $AuCl_3$ with H_2O_2 .
(ii)	Determine the rate equation of the reaction. Show your reasoning, quoting data from the table.
(iii)	Use the results of experiment 2 to calculate the value of the rate constant, k , for this reaction.
	Include the units of k.
	rate constant, k =
	units =[2]

(c) AlF_3 is an ionic compound.

The Born–Haber cycle for the formation of AlF_3 is shown.

(i) Name the enthalpy changes labelled ΔH_4 and ΔH_6 .

ΛH, =	#10°	
$\Delta H_c = \dots$		
U	-50	[2]

(ii) Use the data in the table and data from the $Data\ Booklet$ to calculate the lattice energy of AlF_3 .

process	enthalpy change /kJ mol ⁻¹
$Al(s) \rightarrow Al(g)$	+326
$Al(g) \rightarrow Al^{3+}(g)$	+5137
$F(g) \rightarrow F^{-}(g)$	-328
$Al(s) + 1.5F2(g) \rightarrow AlF3(s)$	-1504

lattice energy of
$$AlF_3 = \dots kJ mol^{-1}$$
 [2]

(iii)	Scandium fluoride, ScF ₃ , is an ionic compound.	
	Use data from the $\it Data Booklet$ to suggest how the lattice energy of $\it AlF_3$ compathe lattice energy of $\it ScF_3$.	res with
	Explain your answer.	
		[2]
	$^{2}F_{3}$ is sparingly soluble in water. The concentration of its saturated solution at $^{2}5 \times 10^{-2}$ mol dm $^{-3}$.	298K is
(i)	Write an expression for the solubility product, $K_{\rm sp}$, of A l F $_3$.	
	$K_{\rm sp}$ =	[1]
(ii)	Calculate the numerical value of $K_{\rm sp}$ for A l F $_{\rm 3}$ at 298 K.	
	$K_{\rm sp} = \dots$	
	K _{sp} =	ra
		[1]
	П	otal: 25

4. June/2020/Paper_41/No.3

The overall reaction for photosynthesis is shown.

$$6CO_2 + 6H_2O \rightarrow C_6H_{12}O_6 + 6O_2$$

Water is oxidised in this process according to the following half-equation.

$$2H_2O \rightarrow O_2 + 4H^+ + 4e^-$$

half-equation 1

(a) (i) Use these equations to deduce the half-equation for the reduction of carbon dioxide in this process.

[2]

(ii) Draw a fully labelled diagram of the apparatus that should be used to measure the standard electrode potential, E° , of $O_2(g)$ in half-equation 1 under standard conditions. Include all necessary chemicals.

[4]

For the cell drawn in (a)(ii), use the Data Booklet to calculate the $E_{\text{cell}}^{\bullet}$ and deduce which electrode is positive.

[1]

5.	lune	/2020	/Paper	41	/No.7a	
J.	Julie	/ 2020	/ raper	-+ ±,	/ INO. / a	

- (a) Silver carbonate, Ag_2CO_3 , is sparingly soluble in water. The numerical value of the solubility product, K_{sp} , for silver carbonate is 6.3×10^{-12} at $25 \,^{\circ}C$.
 - (i) Write an expression for the solubility product, K_{sp} , of Ag₂CO₃, and state its units.

$$K_{sp} =$$

(ii) Calculate the equilibrium concentration of Ag⁺ in a saturated solution of Ag₂CO₃ at 25 °C.

(iii) Solid Ag₂CO₃ is stirred at 25 °C with 0.050 mol dm⁻³ AgNO₃ until no more Ag₂CO₃ dissolves.

Calculate the concentration of carbonate ions, [CO₃²⁻], in this solution.

(iv) An electrochemical cell is set up to measure the electrode potential, E, for the Ag⁺/Ag half-cell using the saturated Ag₂CO₃(aq) with a standard hydrogen electrode.

Use the *Data Booklet*, your answer to (a)(ii), and the Nernst equation to calculate the electrode potential, *E*, for this Ag⁺/Ag half-cell.

E for Ag⁺/Ag half-cell =V [2]

6. June/2020/F	Paper 41/No.9
----------------	---------------

(a) Manganese(IV) oxide, MnO₂, catalyses the decomposition of hydrogen peroxide, H₂O₂, as shown.

$$2H_2O_2(aq) \xrightarrow{MnO_2} 2H_2O(I) + O_2(g)$$

The mechanism involves the formation of the intermediate species, Mn²⁺, in the first step which is subsequently used up in the second step.

can catalyse this reaction.	entials, E ^o , to construct two equations to snow now ivi	nO ₂
	O.	
equation 1		
equation 2		
equation 2	(3)	[3]

(b) The equation for the decomposition of hydrogen peroxide without a catalyst is shown.

$$2H_2O_2(aq) \rightarrow 2H_2O(I) + O_2(g)$$

Under certain conditions this reaction is found to be first order with respect to hydrogen peroxide, with a rate constant, k, of $2.0 \times 10^{-6} \, \text{s}^{-1}$ at 298 K.

Calculate the initial rate of decomposition of a 0.75 mol dm⁻³ hydrogen peroxide solution at 298 K.

initial rate =
$$mol dm^{-3} s^{-1}$$
 [1]

(c) A four-step mechanism is suggested for the reaction between hydrogen peroxide and iodide ions in an acidic solution.

step 1
$$H_2O_2 + I^- \rightarrow IO^- + H_2O$$

step 2
$$H^+ + IO^- \rightarrow HIO$$

step 3 HIO +
$$I^- \rightarrow I_2$$
 + OH⁻

step 4
$$OH^- + H^+ \rightarrow H_2O$$

Step 1 is the rate-determining step.

(i) State what is meant by the term rate-determining step.

 [1]

(ii) Use this mechanism to construct a balanced equation for this reaction.

(iii) Deduce the order of reaction with respect to each of the following.

Deduce the order of reaction with respect to each of the following.
$$H_2O_2 = \dots \qquad I^- = \dots \qquad H^+ = \dots \qquad [1]$$
 [Total: 7]

[Total: 7]

7.			Paper_42/No.7a
	(a) ((i) [Define the term <i>electron affinity</i> .
		•	
			[2]
	(i	ii) [Define the term <i>lattice energy</i> .
			[2]
			Palpacamila idose